Global Warming Models Come Under Physicist's Scrutiny

July 30, 2004

Two University of Rochester studies published in the latest issue of Geophysical Research Letters underline how uncertain and complex the understanding of global climate can be. Both reports emphasize some of the shortcomings in current weather models that scientists use to determine the effect of carbon dioxide on the Earth's average temperature.

The first paper compares temperature data from several altitudes above the Earth’s surface with what the top three internationally used global weather models predict happens at these altitudes when carbon dioxide is introduced. David Douglass, professor of physics at the University, used data gathered from satellites, radio-born weather balloons and other sources recorded over the last 20 years. He shows that these global weather models predict that as carbon dioxide increases, it should affect the temperatures of higher elevations more than it does at ground level. Douglass’s analysis suggests that while the models do roughly match ground temperatures as carbon dioxide increased over the last 20 years, the mid- to high-tropospheric levels of the atmosphere actually cooled.

“The models are relatively accurate at predicting the temperatures at the Earth’s surface, “says Douglass, “but when you go a few miles up, they diverge dramatically. The models are really challenged to explain these results.”

Though the study doesn’t suggest what might be causing the discrepancy, it clearly shows an area of disagreement that today’s global models need to address in order to increase their accuracy, especially in the time of such hot-button issues as carbon dioxide’s effect on global warming.

Douglass’s second paper in the same journal adds weight to the veracity of satellite temperature readings over the last two decades. Ever since satellites have been equipped to read the Earth’s temperature from orbit, there has been a roughly one-degree disparity between the satellite results and those observed directly from measurements taken at the surface itself. The cause of the disparity has been a source of contention over the last 20 years. In the earlier years, many scientists assumed that the problem was due to satellite error, but newer satellites continue to reinforce the earlier measurements. The Earth seems about a degree cooler when measured by the satellites than it does when measured at ground or sea level. Douglass has turned to a third independent source for additional temperature data, which includes temperatures recorded by weather balloons.

“Weather balloons might seem like an odd way to measure the temperature of the surface of the Earth until you realize that the first temperature reading is taken before the balloon has launched,” says Douglass.

The number of weather balloon readings is not as extensive as the number of conventional surface readings, but they do align much more closely with the satellite readings than those of the surface readings. Lending more weight to the satellite temperatures would mean revising downward the global temperature, which would have implications for the global warming outlook. Both the satellite and balloon data sets do suggest that the overall temperature is increasing, but the increase is significantly less than the one-degree increase noted by surface thermometers.

The Rochester study also shows that the disparity between surface and satellite temperatures seems to exist mostly over the oceans, suggesting that the difference between the method of taking the Earth’s temperature over water may contribute to the disparity. Douglass notes that surface temperature of the Earth’s oceans is taken from the surface water itself, rather than the air as weather balloons do, and that this may account for the difference.

Source: University of Rochester

Explore further: Understanding multi-decadal global warming rate changes

Related Stories

Understanding multi-decadal global warming rate changes

June 14, 2017

Despite persistently increasing greenhouse gas emissions throughout the 20th and early 21st centuries, the globally averaged surface temperature has shown distinct multi-decadal fluctuations since 1900, including two weak ...

Team takes temperature to determine cause of Ice Age

June 13, 2017

New research by Simon Fraser University professor Karen Kohfeld and University of Tasmania professor Zanna Chase, published in the journal Earth and Planetary Science Letters, examines how the ocean pulled carbon dioxide ...

NASA data suggest future may be rainier than expected

June 12, 2017

A new study suggests that most global climate models may underestimate the amount of rain that will fall in Earth's tropical regions as our planet continues to warm. That's because these models underestimate decreases in ...

Recommended for you

Scientists uncover origins of the Sun's swirling spicules

June 22, 2017

At any given moment, as many as 10 million wild jets of solar material burst from the sun's surface. They erupt as fast as 60 miles per second, and can reach lengths of 6,000 miles before collapsing. These are spicules, and ...

Quantum thermometer or optical refrigerator?

June 22, 2017

In an arranged marriage of optics and mechanics, physicists have created microscopic structural beams that have a variety of powerful uses when light strikes them. Able to operate in ordinary, room-temperature environments, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.