Observing a Photon no Longer a Seek-and-Destroy Mission

June 2, 2004

A team of University of Queensland, Australia physicists has devised a sophisticated measurement system for single particles of light, or photons, enabling them to investigate fascinating behaviour in the quantum world.

In a world-first, the path of a single photon can now be measured without destroying the photon in the process.

One of the most surprising and unexpected aspects of quantum mechanics is the propensity for a photon to behave both like a particle and a wave.

The measurement developed at the Centre for Quantum Computer Technology within UQ’s School of Physical Sciences has enabled these wave-like and particle-like properties of a single photon to be observed simultaneously.

The breakthrough innovation by Drs Geoff Pryde, Jeremy O’Brien, Andrew White, Stephen Bartlett and Associate Professor Tim Ralph was recently published in the American Physical Society’s Physical Review Letters.

The quintessential experiment demonstrating the wave-like properties of light was English physicist Thomas Young’s c.1801 experiment where light was shone on a pair of holes in a screen. Interference between the two possible paths gave rise to an interference pattern on a second screen behind the holes — a wave-like phenomenon.

The remarkable thing is that this wave-like behaviour persists even when the light is so dim that only a single photon is present in the apparatus at any given time.

“That is unless the experimenter observes a particle-like property by measuring which path the photon took — in that case the interference disappears,” Dr O’Brien said.

In the UQ experiment, the researchers found that indeed the more particle-like the photon’s behaviour was, the less wave-like behaviour was observed, and vice versa.

The experiment shows once and for all that light is essentially fickle — sometimes behaving as particles and at others, like waves.

To measure the path of single photon, the team observed a second photon which carried away information about the first after the two interacted.

The experiment involved shining a powerful ultra-violet laser in to a special crystal to produce the two photons; a circuit of optical fibres; lenses and other optical elements; and normal destructive single photon detectors.

The original news release can be found on the University of Queensland web-site.

Explore further: 'Quiet' light

Related Stories

'Quiet' light

February 1, 2019

Spectrally pure lasers lie at the heart of precision high-end scientific and commercial applications, thanks to their ability to produce near-perfect single-color light. A laser's capacity to do so is measured in terms of ...

Light connects two worlds on a single chip

January 18, 2019

For the first time, researchers of the University of Twente succeeded in connecting two parts of an electronics chip using an on-chip optical link. A light connection could be a safe way of connecting a high-power component ...

Recommended for you

Apple pivot led by star-packed video service

March 25, 2019

With Hollywood stars galore, Apple unveiled its streaming video plans Monday along with news and game subscription offerings as part of an effort to shift its focus to digital content and services to break free of its reliance ...

How tree diversity regulates invading forest pests

March 25, 2019

A national-scale study of U.S. forests found strong relationships between the diversity of native tree species and the number of nonnative pests that pose economic and ecological threats to the nation's forests.

Scientists solve mystery shrouding oldest animal fossils

March 25, 2019

Scientists from The Australian National University (ANU) have discovered that 558 million-year-old Dickinsonia fossils do not reveal all of the features of the earliest known animals, which potentially had mouths and guts.

Earth's deep mantle flows dynamically

March 25, 2019

As ancient ocean floors plunge over 1,000 km into the Earth's deep interior, they cause hot rock in the lower mantle to flow much more dynamically than previously thought, finds a new UCL-led study.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.