Observing a Photon no Longer a Seek-and-Destroy Mission

June 2, 2004

A team of University of Queensland, Australia physicists has devised a sophisticated measurement system for single particles of light, or photons, enabling them to investigate fascinating behaviour in the quantum world.

In a world-first, the path of a single photon can now be measured without destroying the photon in the process.

One of the most surprising and unexpected aspects of quantum mechanics is the propensity for a photon to behave both like a particle and a wave.

The measurement developed at the Centre for Quantum Computer Technology within UQ’s School of Physical Sciences has enabled these wave-like and particle-like properties of a single photon to be observed simultaneously.

The breakthrough innovation by Drs Geoff Pryde, Jeremy O’Brien, Andrew White, Stephen Bartlett and Associate Professor Tim Ralph was recently published in the American Physical Society’s Physical Review Letters.

The quintessential experiment demonstrating the wave-like properties of light was English physicist Thomas Young’s c.1801 experiment where light was shone on a pair of holes in a screen. Interference between the two possible paths gave rise to an interference pattern on a second screen behind the holes — a wave-like phenomenon.

The remarkable thing is that this wave-like behaviour persists even when the light is so dim that only a single photon is present in the apparatus at any given time.

“That is unless the experimenter observes a particle-like property by measuring which path the photon took — in that case the interference disappears,” Dr O’Brien said.

In the UQ experiment, the researchers found that indeed the more particle-like the photon’s behaviour was, the less wave-like behaviour was observed, and vice versa.

The experiment shows once and for all that light is essentially fickle — sometimes behaving as particles and at others, like waves.

To measure the path of single photon, the team observed a second photon which carried away information about the first after the two interacted.

The experiment involved shining a powerful ultra-violet laser in to a special crystal to produce the two photons; a circuit of optical fibres; lenses and other optical elements; and normal destructive single photon detectors.

The original news release can be found on the University of Queensland web-site.

Explore further: New form of light: Newly observed optical state could enable quantum computing with photons

Related Stories

New hole-punched crystal clears a path for quantum light

February 13, 2018

Optical highways for light are at the heart of modern communications. But when it comes to guiding individual blips of light called photons, reliable transit is far less common. Now, a collaboration of researchers from the ...

Light controls two-atom quantum computation

February 7, 2018

Some powerful rulers of the world may dream of the possibility to get in touch with their colleagues on different continents unnoticed by friends or foes. Someday, new quantum technologies could allow for making these wishes ...

Recommended for you

Spore formation model could advance medicine

February 21, 2018

Michigan State University scientists have produced experimental and modeling results that shed light on how a particular type of enzyme functions during spore formation, potentially advancing human health and disease research.

New insight into plants' self-defense

February 21, 2018

Chloroplasts are the ultimate green machines—the parts of plant cells that turn sunlight into food in a fairly famous process known as photosynthesis.

Triplefin fish found to have controlled iris radiance

February 21, 2018

A team of researchers with the University of Tübingen in Germany has found an example of a fish that is able to control light reflected from organs next to its pupils—a form of photolocation. In their paper published in ...

Some black holes erase your past

February 21, 2018

In the real world, your past uniquely determines your future. If a physicist knows how the universe starts out, she can calculate its future for all time and all space.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.