Quantum battles in attoscience: Following three debates

In July 2020, 300 researchers from 34 different countries attended the CECAM virtual workshop, 'Quantum Battles in Attoscience'. EPJ D presents three community papers which emerged from the in-depth panel discussions held ...

Uncovering fragmentation differences in chiral biomolecules

By combining mass spectroscopy with further analytical and simulation techniques, researchers have revealed key differences in the fragmentation of dipeptide biomolecules with different chiral structures.

Investigating dense plasmas with positron waves

Astrophysical and lab-created plasmas under the influence of magnetic fields are the source of intense study. New research seeks to understand the dynamics of position waves traveling through these clouds of highly ionized ...

Characterising cold fusion in 2-D models

Progress towards 'cold fusion,' where nuclear fusion can occur at close to room temperatures, has now been at a standstill for decades. However, an increasing number of studies are now proposing that the reaction could be ...

Optimising laser-driven electron acceleration

The interaction between lasers and matter is at the forefront of new investigations into fundamental physics as well as forming a potential bedrock for new technological innovations. One of the initiatives spearheading this ...

Measuring electron emission from irradiated biomolecules

When fast-moving ions cross paths with large biomolecules, the resulting collisions produce many low-energy electrons which can go on to ionize the molecules even further. To fully understand how biological structures are ...

Stresses and flows in ultra-cold superfluids

Superfluids, which form only at temperatures close to absolute zero, have unique and in some ways bizarre mechanical properties. Yvan Buggy of the Institute of Photonics and Quantum Sciences at Heriot-Watt University in Edinburgh, ...

page 3 from 11