Page 9: Research news on Self-assembly

Self-assembly as a research area investigates the spontaneous organization of components into ordered structures driven by local interactions and thermodynamic or kinetic principles, without direct external manipulation of each element. It encompasses molecular, nanoscale, and mesoscale systems where noncovalent forces (e.g., van der Waals, electrostatic, hydrophobic, hydrogen bonding) or specific binding interactions encode structural information. Research focuses on understanding design rules, energy landscapes, and defect formation, as well as developing programmable systems (e.g., DNA origami, block copolymers, colloidal crystals) for applications in materials science, nanotechnology, and biotechnology, often linking equilibrium self-assembly with nonequilibrium and hierarchical assembly processes.

Unveiling the future of nanostructures with soft matter magic

As traditional top-down approaches like photolithography reach their limitations in creating nanostructures, scientists are shifting their focus toward bottom-up strategies. Central to this paradigm shift is the self-assembly ...

Building a DNA nanoparticle to be both carrier and medicine

Scientists have been making nanoparticles out of DNA strands for two decades, manipulating the bonds that maintain DNA's double-helical shape to sculpt self-assembling structures that could someday have jaw-dropping medical ...

page 9 from 16