Controlling ultra-strong light-matter coupling at room temperature

Physicists at Chalmers University of Technology in Sweden, together with colleagues in Russia and Poland, have managed to achieve ultra-strong coupling between light and matter at room temperature. The discovery is of importance ...

New quantum switch turns metals into insulators

Most modern electronic devices rely on tiny, finely-tuned electrical currents to process and store information. These currents dictate how fast our computers run, how regularly our pacemakers tick and how securely our money ...

Spinning quantum dots

The name 'quantum dots' is given to particles of semiconducting materials that are so tiny—a few nanometres in diameter—that they no longer behave quite like ordinary, macroscopic matter. Thanks to their quantum-like ...

Scientists create fully electronic 2-D spin transistors

Physicists from the University of Groningen constructed a two-dimensional spin transistor, in which spin currents were generated by an electric current through graphene. A monolayer of a transition metal dichalcogenide (TMD) ...

A torque on conventional magnetic wisdom

Physicists at the University of Illinois at Urbana-Champaign have observed a magnetic phenomenon called the "anomalous spin-orbit torque" (ASOT) for the first time. Professor Virginia Lorenz and graduate student Wenrui Wang, ...

Researchers modify magnetic behavior of exotic materials

People are not the only ones to be occasionally frustrated. Some crystals also show frustrations. They do so whenever their elementary magnets, the magnetic spins, cannot align properly. Cesium copper chloride (Cs2CuCl4) ...

A compass pointing west

Researchers at the Paul Scherrer Institute PSI and ETH Zurich have discovered a special phenomenon of magnetism in the nano range. It enables magnets to be assembled in unusual configurations. This could be used to build ...

page 2 from 4