Making mini-magnets that induce a quantum anomalous Hall effect

A new device has been fabricated that can demonstrate the quantum anomalous Hall effect, in which tiny, discrete voltage steps are generated by an external magnetic field. This work may enable extremely low-power electronics, ...

Ferroelectric oxides do the twist

(Phys.org) -- Some materials, by their nature, do what we want them to do -- notably, the ubiquitous, semiconducting silicon found in almost every electronic device. But sometimes, naturally occurring materials need a little ...

Demagnetization by rapid spin transport

The fact that an ultrashort laser pulse is capable of demagnetizing a ferromagnetic layer in a jiffy has been well-known since approximately 1996. What we don't yet understand, however, is how exactly this demagnetization ...

The future for antiferromagnetic information storage

A review published in IEEE Transactions on Magnetics compiles the approaches that have been employed for reading and storing information in antiferromagnets and answers the question about how to write on antiferromagnetics ...

Magnetic vortices observed in haematite

Vortices are common in nature, but their formation can be hampered by long range forces. In work recently published in Nature Materials, an international team of researchers has used mapped X-ray magnetic linear and circular ...

Novel magnetic material operates under extreme stress conditions

(PhysOrg.com) -- Ferromagnetic materials are key ingredients in vast arrays of technologies including wind turbines, computer hard-disks, credit card readers, and many more. Typically these magnets operate in moderate environments. ...

page 9 from 14