Smaller than small: Why we measure the space between atoms

We study the movement of incredibly small things. How small is small? Think smaller than "nano." Think smaller than atoms themselves. We measure the infinitesimally small shifts in the positions of atoms to electrical forces. ...

From metal to insulator and back again

New work from Carnegie's Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Their work is published in Physical Review Letters.

page 5 from 13