Scientists equip bacteria with custom chemo-navigational system

May 10, 2007

Using an innovative method to control the movement of Escherichia coli in a chemical environment, Emory University scientists have opened the door to powerful new opportunities in drug delivery, environmental cleanup and synthetic biology. Their findings are published online in the Journal of the American Chemical Society and will be published in a future print issue.

Justin Gallivan, PhD, assistant professor of chemistry, and graduate student Shana Topp successfully reprogrammed E. coli's chemo-navigational system to detect, follow and precisely localize to specific chemical signals. In doing so, the scientists exploited E. coli's natural chemotaxis, a microbe's ability to move toward specific chemicals in its environment.

"Equipping bacteria with a way to degrade pollutants, synthesize and release therapeutics, or transport chemicals with an ability to localize to a specific chemical signal would open new frontiers in environmental cleanup, drug delivery and synthetic biology," says Dr. Gallivan.

The researchers equipped E. coli with a "riboswitch," a segment of RNA that changes shape when bound to certain small target molecules, which can then turn genes on or off. Dr. Gallivan and Topp believe that the riboswitch can be used to equip other types of self-propelled bacteria with "chemo-navigation" systems to move them toward desired targets.

Chemotactic bacteria navigate chemical environments by coupling their information-processing capabilities to powerful, tiny molecular motors that propel the cells forward.

Researchers have long envisioned reprogramming bacteria so that microbes capable of synthesizing an anti-cancer drug, for instance, can be used to target diseased cells while sparing healthy cells of side effects. Likewise, scientists are researching ways to use bacteria to clean up oil spills or remove other pollutants from soil, water and wastewater.

Source: Emory University

Explore further: Water and sunlight the formula for sustainable fuel

add to favorites email to friend print save as pdf

Related Stories

Сalculations with nanoscale smart particles

2 hours ago

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards ...

Scientists fold RNA origami from a single strand

Aug 14, 2014

RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, many complicated shapes can be fabricated by this technique. Unlike existing methods for folding DNA ...

Electric bugs used to detect water pollution

Aug 11, 2014

(Phys.org) —Scientists from our Department of Chemical Engineering have developed a low-cost device that could be used in developing countries to monitor the quality of drinking water in real time without ...

Foiling bugs that foil drugs

Aug 12, 2014

Every week, faculty members in the department of chemistry meet over lunch to discuss current literature in the field. The conversation at one of these meetings led Marcos Pires to what he calls a "crazy ...

Fundamental plant chemicals trace back to bacteria

Aug 07, 2014

A fundamental chemical pathway that all plants use to create an essential amino acid needed by all animals to make proteins has now been traced to two groups of ancient bacteria. The pathway is also known ...

Recommended for you

The fluorescent fingerprint of plastics

18 hours ago

LMU researchers have developed a new process which will greatly simplify the process of sorting plastics in recycling plants. The method enables automated identification of polymers, facilitating rapid separation ...

Water and sunlight the formula for sustainable fuel

23 hours ago

An Australian National University (ANU) team has successfully replicated one of the crucial steps in photosynthesis, opening the way for biological systems powered by sunlight which could manufacture hydrogen ...

User comments : 0