Method to capture carbon monoxide's energy for new generation of inexpensive fuel cells

Aug 26, 2004

Carbon monoxide, or CO, has long been a major technical barrier to the efficient operation of fuel cells. But now, chemical and biological engineers at UW-Madison have not only cleared that barrier - they also have discovered a method to capture carbon monoxide's energy. To be useful in a power-generating fuel cell, hydrocarbons such as gasoline, natural gas or ethanol must be reformed into a hydrogen-rich gas. A large, costly and critical step to this process requires generating steam and reacting it with carbon monoxide (CO). This process, called water-gas shift, produces hydrogen and carbon dioxide (CO2). Additional steps then are taken to reduce the CO levels further before the hydrogen enters a fuel cell.

James Dumesic, professor of chemical and biological engineering , postdoctoral researcher Won Bae Kim, and graduate students Tobias Voitl and Gabriel Rodriguez-Rivera eliminated the water-gas shift reaction from the process, removing the need to transport and vaporize liquid water in the production of energy for portable applications.

The team, as reported in the Aug. 27 issue of Science, uses an environmentally benign polyoxometalate (POM) compound to oxidize CO in liquid water at room temperature. The compound not only removes CO from gas streams for fuel cells, but also converts the energy content of CO into a liquid that subsequently can be used to power a fuel cell.

"CO has essentially as much energy as hydrogen," Dumesic says. "It has a lot of energy in it. If you take a hydrocarbon and partially oxidize it at high temperature, it primarily makes CO and hydrogen. Conventional systems follow that with a series of these 'water-gas shift' steps. Our discovery has the potential of eliminating those steps. Instead, you can send the CO through our process, which works efficiently at room temperature, and takes the CO out of the gas to make energy."

The research team says the process is especially promising for producing electrical energy from renewable biomass-derived oxygenated hydrocarbons - such as ethylene glycol derived from corn - because these fuels generate H2 and CO in nearly equal amounts during catalytic decomposition. The hydrogen could be used directly in a proton-exchange-membrane fuel cell operating at 50 percent efficiency, and the remaining CO could be converted to electricity via the researchers' new process.

The overall efficiency of such a system is equal to 40 percent and, unlike traditional ethylene glycol reforming, does not require water. The overall efficiency is equivalent to 60 percent of the energy content of octane.

Dumesic's team believes the advance will make possible a new generation of inexpensive fuel cells operating with solutions of reduced POM compounds. While higher current densities can be achieved in fuel cells using electrodes containing precious metals, the researchers found that good current densities can be generated using a simple carbon anode.

Source: University of Wisconsin-Madison

Explore further: Health care site flagged in Heartbleed review

add to favorites email to friend print save as pdf

Related Stories

New study outlines 'water world' theory of life's origins

8 hours ago

(Phys.org) —Life took root more than four billion years ago on our nascent Earth, a wetter and harsher place than now, bathed in sizzling ultraviolet rays. What started out as simple cells ultimately transformed ...

Scientists see urgent need for reducing emissions

Apr 15, 2014

(Phys.org) —The bad news: a major transformation of our current energy supply system is needed in order to avoid a dangerous increase in global temperatures. The good news: the technologies needed to get ...

Debating the future of infrastructure

Apr 15, 2014

Cities face much of the burden of preparing for global changes—whether climate shocks, rapid population growth, or population decline, when industries relocate. Beneath every skyline, a city's leaders and ...

A homemade solar lamp for developing countries

Apr 14, 2014

(Phys.org) —The solar lamp developed by the start-up LEDsafari is a more effective, safer, and less expensive form of illumination than the traditional oil lamp currently used by more than one billion people ...

Recommended for you

Hackers of Oman news agency target Bouteflika

4 hours ago

Hackers on Sunday targeted the website of Oman's official news agency, singling out and mocking Algeria's newly re-elected president Abdelaziz Bouteflika as a handicapped "dictator".

Ex-Apple chief plans mobile phone for India

22 hours ago

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

User comments : 0

More news stories

Hackers of Oman news agency target Bouteflika

Hackers on Sunday targeted the website of Oman's official news agency, singling out and mocking Algeria's newly re-elected president Abdelaziz Bouteflika as a handicapped "dictator".

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Low tolerance for pain? The reason may be in your genes

Researchers may have identified key genes linked to why some people have a higher tolerance for pain than others, according to a study released today that will be presented at the American Academy of Neurology's 66th Annual ...

How to keep your fitness goals on track

(HealthDay)—The New Year's resolutions many made to get fit have stalled by now. And one expert thinks that's because many people set their goals too high.