Method to capture carbon monoxide's energy for new generation of inexpensive fuel cells

Aug 26, 2004

Carbon monoxide, or CO, has long been a major technical barrier to the efficient operation of fuel cells. But now, chemical and biological engineers at UW-Madison have not only cleared that barrier - they also have discovered a method to capture carbon monoxide's energy. To be useful in a power-generating fuel cell, hydrocarbons such as gasoline, natural gas or ethanol must be reformed into a hydrogen-rich gas. A large, costly and critical step to this process requires generating steam and reacting it with carbon monoxide (CO). This process, called water-gas shift, produces hydrogen and carbon dioxide (CO2). Additional steps then are taken to reduce the CO levels further before the hydrogen enters a fuel cell.

James Dumesic, professor of chemical and biological engineering , postdoctoral researcher Won Bae Kim, and graduate students Tobias Voitl and Gabriel Rodriguez-Rivera eliminated the water-gas shift reaction from the process, removing the need to transport and vaporize liquid water in the production of energy for portable applications.

The team, as reported in the Aug. 27 issue of Science, uses an environmentally benign polyoxometalate (POM) compound to oxidize CO in liquid water at room temperature. The compound not only removes CO from gas streams for fuel cells, but also converts the energy content of CO into a liquid that subsequently can be used to power a fuel cell.

"CO has essentially as much energy as hydrogen," Dumesic says. "It has a lot of energy in it. If you take a hydrocarbon and partially oxidize it at high temperature, it primarily makes CO and hydrogen. Conventional systems follow that with a series of these 'water-gas shift' steps. Our discovery has the potential of eliminating those steps. Instead, you can send the CO through our process, which works efficiently at room temperature, and takes the CO out of the gas to make energy."

The research team says the process is especially promising for producing electrical energy from renewable biomass-derived oxygenated hydrocarbons - such as ethylene glycol derived from corn - because these fuels generate H2 and CO in nearly equal amounts during catalytic decomposition. The hydrogen could be used directly in a proton-exchange-membrane fuel cell operating at 50 percent efficiency, and the remaining CO could be converted to electricity via the researchers' new process.

The overall efficiency of such a system is equal to 40 percent and, unlike traditional ethylene glycol reforming, does not require water. The overall efficiency is equivalent to 60 percent of the energy content of octane.

Dumesic's team believes the advance will make possible a new generation of inexpensive fuel cells operating with solutions of reduced POM compounds. While higher current densities can be achieved in fuel cells using electrodes containing precious metals, the researchers found that good current densities can be generated using a simple carbon anode.

Source: University of Wisconsin-Madison

Explore further: Review: Fire phone, an improvement on the familiar

add to favorites email to friend print save as pdf

Related Stories

A new multi-bit 'spin' for MRAM storage

18 minutes ago

Interest in magnetic random access memory (MRAM) is escalating, thanks to demand for fast, low-cost, nonvolatile, low-consumption, secure memory devices. MRAM, which relies on manipulating the magnetization ...

Bats use polarized light to navigate

18 minutes ago

Scientists have discovered that greater mouse-eared bats use polarisation patterns in the sky to navigate – the first mammal that's known to do this.

Law of physics governs airplane evolution

18 minutes ago

Researchers believe they now know why the supersonic trans-Atlantic Concorde aircraft went the way of the dodo—it hit an evolutionary cul-de-sac.

Recommended for you

Student develops filter for clean water around the world

36 minutes ago

Roughly 780 million people around the world have no access to clean drinking water. According to the World Health Organization (WHO), 3.4 million people die from water-related diseases every year. ETH student Jeremy Nussbaumer ...

Designing exascale computers

3 hours ago

"Imagine a heart surgeon operating to repair a blocked coronary artery. Someday soon, the surgeon might run a detailed computer simulation of blood flowing through the patient's arteries, showing how millions ...

User comments : 0