For clean air

Mar 30, 2007

In addition to nitrogen oxides and sulfur oxides, many volatile organic compounds (VOCs) in air contribute to smog and high ozone levels, as well as potentially damaging human health. Clean-air laws are thus rightly continuing to become stricter. Most modern air-purification systems are based on photocatalysts, adsorbents such as activated charcoal, or ozonolysis.

However, these classic systems are not particularly good at breaking down organic pollutants at room temperature. Japanese researchers have now developed a new material that very effectively removes VOCs as well as nitrogen- and sulfur oxides from air at room temperature. As they report in the journal Angewandte Chemie, their system involves a highly porous manganese oxide with gold nanoparticles grown into it.

To prove the effectiveness of their new catalyst, the research team headed by Anil K. Sinha at the Toyota Central R&D Labs carried out tests with acetaldehyde, toluene, and hexane. These three major components of organic air pollution play a role indoors as well as out. All three of these pollutants were very effectively removed from air and degraded by the catalyst—significantly better than with conventional catalyst systems.

One secret to the success of this new material is the extremely large inner surface area of the porous manganese oxide, which is higher than all previously known manganese oxide compounds. This large surface area offers the volatile molecules a large number of adsorption sites. Moreover, the adsorbed pollutants are very effectively broken down. There is clearly plenty of oxygen available for oxidation processes within the manganese oxide lattice. Degradation on the surface is highly effective because free radicals are present there. Presumably, oxygen from air dissociates on the gold surface to replace the consumed oxygen atoms in the lattice structure.

This process only works if the material is produced in a very specific manner: The gold must be deposited onto the manganese oxide by means of vacuum-UV laser ablation. In this technique, a gold surface is irradiated with a special laser, which dislodges gold particles through evaporation. These gold particles have unusually high energy, which allows them to drive relatively deep into the surface of the manganese oxide. This process is the only way to induce sufficiently strong interactions between the little clumps of gold and the manganese oxide support.

Citation: Mesostructured Manganese Oxide/Gold Nanoparticle Composites for Extensive Air Purification, Angewandte Chemie International Edition 2007, 46, No. 16, 2891–2894, doi: 10.1002/anie.200605048

ource: John Wiley & Sons

Explore further: Scientists solve 2000-year-old mystery of the binding media in China's polychrome Terracotta Army

add to favorites email to friend print save as pdf

Related Stories

End dawns for Europe's space cargo delivery role

3 hours ago

Europe will close an important chapter in its space flight history Tuesday, launching the fifth and final robot ship it had pledged for lifeline deliveries to the International Space Station.

Startup offers elderly an Internet key to family links

4 hours ago

Two grandmothers mystified by computer tablets have inspired a French-Romanian startup to develop an application and service to help the elderly stay in touch with their relatives through the Internet.

As numbers of gray seals rise, so do conflicts

Jul 20, 2014

(AP)—Decades after gray seals were all but wiped out in New England waters, the population has rebounded so much that some frustrated residents are calling for a controlled hunt.

Recommended for you

Scientists develop pioneering new spray-on solar cells

16 hours ago

(Phys.org) —A team of scientists at the University of Sheffield are the first to fabricate perovskite solar cells using a spray-painting process – a discovery that could help cut the cost of solar electricity.

User comments : 0