For clean air

Mar 30, 2007

In addition to nitrogen oxides and sulfur oxides, many volatile organic compounds (VOCs) in air contribute to smog and high ozone levels, as well as potentially damaging human health. Clean-air laws are thus rightly continuing to become stricter. Most modern air-purification systems are based on photocatalysts, adsorbents such as activated charcoal, or ozonolysis.

However, these classic systems are not particularly good at breaking down organic pollutants at room temperature. Japanese researchers have now developed a new material that very effectively removes VOCs as well as nitrogen- and sulfur oxides from air at room temperature. As they report in the journal Angewandte Chemie, their system involves a highly porous manganese oxide with gold nanoparticles grown into it.

To prove the effectiveness of their new catalyst, the research team headed by Anil K. Sinha at the Toyota Central R&D Labs carried out tests with acetaldehyde, toluene, and hexane. These three major components of organic air pollution play a role indoors as well as out. All three of these pollutants were very effectively removed from air and degraded by the catalyst—significantly better than with conventional catalyst systems.

One secret to the success of this new material is the extremely large inner surface area of the porous manganese oxide, which is higher than all previously known manganese oxide compounds. This large surface area offers the volatile molecules a large number of adsorption sites. Moreover, the adsorbed pollutants are very effectively broken down. There is clearly plenty of oxygen available for oxidation processes within the manganese oxide lattice. Degradation on the surface is highly effective because free radicals are present there. Presumably, oxygen from air dissociates on the gold surface to replace the consumed oxygen atoms in the lattice structure.

This process only works if the material is produced in a very specific manner: The gold must be deposited onto the manganese oxide by means of vacuum-UV laser ablation. In this technique, a gold surface is irradiated with a special laser, which dislodges gold particles through evaporation. These gold particles have unusually high energy, which allows them to drive relatively deep into the surface of the manganese oxide. This process is the only way to induce sufficiently strong interactions between the little clumps of gold and the manganese oxide support.

Citation: Mesostructured Manganese Oxide/Gold Nanoparticle Composites for Extensive Air Purification, Angewandte Chemie International Edition 2007, 46, No. 16, 2891–2894, doi: 10.1002/anie.200605048

ource: John Wiley & Sons

Explore further: Photosensitive version of amiloride allows regulating the function of sodium-specific ion channels with light

add to favorites email to friend print save as pdf

Related Stories

The promise and peril of nanotechnology

Mar 26, 2014

Scientists at Northwestern University have found a way to detect metastatic breast cancer by arranging strands of DNA into spherical shapes and using them to cover a tiny particle of gold, creating a "nano-flare" ...

How your smartphone got so smart

Sep 16, 2013

In 1947, the Cold War, David Letterman, and the CIA were born; the future Queen Elizabeth got married; and a U.S. postage stamp cost 3 cents. That was also the year the seed that would eventually grow into ...

Innovative solutions for urban mining

May 30, 2013

Urban mining is a performed by extracting metal resources from electronic products. Gold from PCBs and Lithium from seawater - read more about Prof. Jai-Koo Park of Hanyang University on his research into ...

Turning sunlight into liquid fuels (Video)

Mar 11, 2009

(PhysOrg.com) -- For millions of years, green plants have employed photosynthesis to capture energy from sunlight and convert it into electrochemical energy. A goal of scientists has been to develop an artificial ...

Recommended for you

Chemists eye improved thin films with metal substitution

Jul 21, 2014

The yield so far is small, but chemists at the University of Oregon have developed a low-energy, solution-based mineral substitution process to make a precursor to transparent thin films that could find use ...

Essential oils may provide good source of food preservation

Jul 21, 2014

A new study in the Journal of Food Science, published by the Institute of Food Technologists (IFT), found that essential oils may be able to be used as food preservatives in packaging to help extend the shelf-life of foo ...

User comments : 0