'Micro-rack' measures cell mechanical properties

Mar 02, 2007
'Micro-Rack' Measures Cell Mechanical Properties
Electron micrograph of the NIST "cell puller," which measures the mechanical properties of a living cell. After the cell spreads and adheres to the center of the 200-micrometer-wide circular platform, half of the platform is pulled slowly away, while a sensor connected to the other half measures the force on the cell. Credit: D. Serrell/NIST

Researchers at the National Institute of Standards and Technology have developed a microelectromechanical system (MEMS) cell-stretcher that can measure the mechanical properties of a living cell, such as its ability to stick to a surface. The new device is expected to enable novel studies of cell mechanics, which influence basic cell functions such as growth and division, and diseases such as sickle cell anemia and asthma.

The prototype device, described in a new paper, is believed to be the only technique for studying bulk mechanical properties of a single, whole cell while it is spreading out and sticking to a substrate as it would in the body, says the designer, NIST bioengineer David Serrell. Other biomechanical test methods focus on individual cell components or entire tissues.

The heart of the NIST device is a circular cell platform 200 micrometers wide, a tiny fleck just barely visible to the naked eye. The two halves of the circle can be pulled as far as 100 micrometers apart under computer control, while the force needed to separate them is measured by sensors. In a demonstration using a connective tissue cell, the cell is placed on the center of the platform, allowed to spread and adhere for several hours, and then pulled slowly apart until it detaches. In NIST experiments, the cells let go of the substrate at a force of about 1500 nanonewtons.

The devices are made on silicon wafers using a NIST-developed process based on standard chip-making techniques. The geometry of any component can be altered to suit a variety of cell types and experiments. The apparatus could be used for a variety of studies, such as effects of cyclic strain on cells, the elasticity of their response to force, or the effectiveness of different proteins used to encourage attachment of the cells, Serrell says. The newest version of the device, fabricated but not yet tested, is made of silicon nitride, a transparent material that will allow simultaneous real-time imaging of the interior of the cells and perhaps provide new insights into the relationships of force and cell mechanical properties and structure.

Citation: D.B. Serrell, T. Oreskovic, A.J. Slifka, R.L. Mahajan and D.S. Finch. A uniaxial bioMEMS device for quantitative force-displacement measurements. Biomedical Microdevices. Available online.

Source: National Institute of Standards and Technology

Explore further: Salmon forced to 'sprint' less likely to survive migration

add to favorites email to friend print save as pdf

Related Stories

US clears $2.3 bln Lenovo deal for IBM unit

3 hours ago

IBM said Friday that US authorities had cleared a $2.3 billion deal allowing China-based Lenovo to take over its server unit after a national security review.

Hitchhiking robot charms its way across Canada

3 hours ago

He has dipped his boots in Lake Superior, crashed a wedding and attended an Aboriginal powwow. A talking, bucket-bodied robot has enthralled Canadians since it departed from Halifax last month on a hitchhiking ...

Attack Ebola on a nanoscale

6 hours ago

(Phys.org) —The Ebola virus outbreak in West Africa has claimed more than 900 lives since February and has infected thousands more. Countries such as Nigeria and Liberia have declared health emergencies, ...

Phone snooping via gyroscope to be detailed at Usenix

7 hours ago

Put aside fears of phone microphones and cameras doing eavesdropping mischief for a moment, because there is another sensor that has been flagged. Researchers from Stanford and defense research group at Rafael ...

Recommended for you

Orb-weaving spiders living in urban areas may be larger

10 hours ago

A common orb-weaving spider may grow larger and have an increased ability to reproduce when living in urban areas, according to a study published August 20, 2014 in the open-access journal PLOS ONE by Eli ...

User comments : 0