Toward tapping the potential of 'stranded' natural gas

Feb 28, 2007

Newly discovered chemical catalysts may be an answer to the century-long search for economical ways of using natural gas now burned or "flared" as waste in huge quantities, scientists in the United States and Germany report. Their study is scheduled for the March 7 issue of the Journal of the American Chemical Society.

Johannes A. Lercher and colleagues at the Technical University of Munich and Dow Chemical Company explain that 30 percent to 60 percent of the world's natural gas is classified as "stranded," meaning that it cannot be used locally or transported economically to other markets. When produced in the course of pumping crude oil, such gas is vented to the atmosphere or burned at the wellhead.

That wasted natural gas is mainly methane, a compound in great demand as a chemical feedstock, a basic raw material for making chemicals that are subsequently used to make hundreds of medical, commercial and industrial products. No practical technology has been available, however, for using the methane in natural gas as a chemical feedstock. The new study describes research on lanthanum-based catalysts that convert methane into a compound that would be an ideal chemical feedstock.

Source: ACS

Explore further: Team pioneers strategy for creating new materials

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Team pioneers strategy for creating new materials

Aug 29, 2014

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Plug n' Play protein crystals

Aug 29, 2014

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the ...

Protein glue shows potential for use with biomaterials

Aug 28, 2014

Researchers at the University of Milan in Italy have shown that a synthetic protein called AGMA1 has the potential to promote the adhesion of brain cells in a laboratory setting. This could prove helpful ...

User comments : 0