Toward tapping the potential of 'stranded' natural gas

Feb 28, 2007

Newly discovered chemical catalysts may be an answer to the century-long search for economical ways of using natural gas now burned or "flared" as waste in huge quantities, scientists in the United States and Germany report. Their study is scheduled for the March 7 issue of the Journal of the American Chemical Society.

Johannes A. Lercher and colleagues at the Technical University of Munich and Dow Chemical Company explain that 30 percent to 60 percent of the world's natural gas is classified as "stranded," meaning that it cannot be used locally or transported economically to other markets. When produced in the course of pumping crude oil, such gas is vented to the atmosphere or burned at the wellhead.

That wasted natural gas is mainly methane, a compound in great demand as a chemical feedstock, a basic raw material for making chemicals that are subsequently used to make hundreds of medical, commercial and industrial products. No practical technology has been available, however, for using the methane in natural gas as a chemical feedstock. The new study describes research on lanthanum-based catalysts that convert methane into a compound that would be an ideal chemical feedstock.

Source: ACS

Explore further: Decoding 'sweet codes' that determine protein fates

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Chemical biologists find new halogenation enzyme

6 hours ago

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

12 hours ago

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

12 hours ago

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

14 hours ago

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

Science to the rescue of art

Sep 14, 2014

Vincent van Gogh's "Sunflowers" are losing their yellow cheer and the unsettling apricot horizon in Edvard Munch's "The Scream" is turning a dull ivory.

User comments : 0