Toward tapping the potential of 'stranded' natural gas

Feb 28, 2007

Newly discovered chemical catalysts may be an answer to the century-long search for economical ways of using natural gas now burned or "flared" as waste in huge quantities, scientists in the United States and Germany report. Their study is scheduled for the March 7 issue of the Journal of the American Chemical Society.

Johannes A. Lercher and colleagues at the Technical University of Munich and Dow Chemical Company explain that 30 percent to 60 percent of the world's natural gas is classified as "stranded," meaning that it cannot be used locally or transported economically to other markets. When produced in the course of pumping crude oil, such gas is vented to the atmosphere or burned at the wellhead.

That wasted natural gas is mainly methane, a compound in great demand as a chemical feedstock, a basic raw material for making chemicals that are subsequently used to make hundreds of medical, commercial and industrial products. No practical technology has been available, however, for using the methane in natural gas as a chemical feedstock. The new study describes research on lanthanum-based catalysts that convert methane into a compound that would be an ideal chemical feedstock.

Source: ACS

Explore further: New method allows for greater variation in band gap tunability

add to favorites email to friend print save as pdf

Related Stories

Cheap asphalt provides 'green' carbon capture

Jan 07, 2015

(Phys.org)—The best material to keep carbon dioxide from natural gas wells from fouling the atmosphere may be a derivative of asphalt, according to Rice University scientists.

Recommended for you

Pinholes are pitfalls for high performance solar cells

Jan 30, 2015

The most popular next-generation solar cells under development may have a problem – the top layer is full of tiny pinholes, researchers at the Okinawa Institute of Science and Technology Graduate University ...

Chemistry in a trillionth of a second

Jan 30, 2015

Chemists at the University of Bristol, in collaboration with colleagues at the Central Laser Facility at the Rutherford Appleton Laboratory (RAL) and Heriot-Watt University (HWU), can now follow chemical ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.