PULSE: The Impact of European Pulsar Science on Modern Physics

Dec 08, 2005
Dark energy, black holes and exploding stars

Pulsars are neutron stars that rotate quickly, up to 600 times per second. They are compact -- only 20 kilometres in diameter -- leftovers of supernova explosions. Nonetheless they have a mass 1.4 times that of our sun, and a very strong magnetic field. They emit beams of radiation from two regions above their magnetic poles, using a mechanism that is not completely understood.

When a pulsar rotates, we on Earth can receive these regular radio pulses. Because neutron stars have a high inertia, their pulse periods are quite stable -- they are like very precise clocks in outer space. Observing fluctuations in the pulse rates allows us to follow pulsar movements very closely. We can also learn about the properties of super-dense materials, the behaviour of plasma in strong magnetic fields, and a number of other extreme conditions in the universe.

Because it is very expensive to produce and use equipment to examine these stars, researchers across the continent created the European Pulsar Network (EPN, also known as PULSE). It began with the development of a common format to bring together data from very different measuring devices. One early PULSE success was when three European telescopes simultaneously observed radio pulses from pulsars at three different wavelengths. In co-operation with the Australian Telescope National Facility, members of the network helped develop new instruments and computer programs, co-ordinate observation programmes, and create a publicly accessible databank (www.mpifr-bonn.mpg.de/div/pulsar/data/) for all the observational information that was returned.

850 new pulsars were discovered thanks to this co-operation. This greatly exceeds the total number found over the last 30 years. Furthermore, the research team's greatest success was the discovery of the first double pulsar. That such a system exists at all is unusual, because its two components must have made it through a double supernova explosion.

Using pulsars as clocks, it is possible to measure how the presence of heavy bodies curves space-time. By observing pulsars, the researchers have shown repeatedly that close double neutron star systems send out strong gravitational waves.

The newly discovered double pulsar system has also helped beautifully to confirm Einstein's General Relativity Theory. In the system, all orbital parameters are directly astronomically confirmable, and the masses of both pulsars can be determined. But because of the effects predicted by relativity theory, five more independent mass calculations were possible. All gave the same result with great precision. This provided more evidence in favour of Einstein's theory about the connection between space, time, and material.

Project co-ordination: Prof. Andrew Lyne, University of Manchester (Great Britain), together with Prof. Nicolo D'amico, INAF Osservatorio Astronomico di Cagliari (Italy), Dr. Axel Jessner, Max Planck Institute for Radioastronomy (Germany), Dr. Ben Stappers, ASTRON (Netherlands) and Prof. Ioannis Seiradakis, University of Thessaloniki (Greece)

On December 2 the European Commission honoured the most successful intra- European research projects of the year. The Descartes Research Prize went to five different projects, awarding 200,000 euros each. Max Planck scientists played a major role in two of the winning projects: "PULSE -- European Pulsar Research" (Max Planck Institute for Radioastronomy) and "CECA - Climate and Environmental Change in the Arctic" (Max Planck Institute for Meteorology).

Source: Max Planck Institute

Explore further: Better thermal-imaging lens from waste sulfur

add to favorites email to friend print save as pdf

Related Stories

Chameleon pulsar baffles astronomers

Jan 24, 2013

A pulsar that is able, without warning, to dramatically change the way in which it shines has been identified by an international team of astronomers.

Dead stars could be the future of spacecraft navigation

Oct 09, 2012

Scientists at the National Physical Laboratory (NPL) and the University of Leicester have been commissioned by the European Space Agency (ESA) to investigate the feasibility of using dead stars to navigate ...

Laying the basis for gravitational wave detection

Jun 27, 2012

Astronomers have long relied on light waves to provide information about astrophysical objects. The hunt for gravitational waves, highly sought after but terribly elusive, should get a boost from theoretical ...

Finger on the pulse of the pulsars

May 06, 2011

(PhysOrg.com) -- An international team of astronomers including German scientists has succeeded in recording the most sensitive observations to date of pulsars at low frequency. The measurement was undertaken ...

LOFAR takes the pulse of the radio sky

Apr 14, 2011

(PhysOrg.com) -- A powerful new telescope is allowing an international team led by University of Manchester scientists to have their “best-ever look” at pulsars – rapidly rotating neutron stars ...

Recommended for you

Better thermal-imaging lens from waste sulfur

10 hours ago

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Robotics goes micro-scale

22 hours ago

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

User comments : 0

More news stories

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...