Nanothermometers for cancer

Dec 01, 2005

Thermometers only nanometers or billionths of a meter in diameter could boost the effectiveness of heat- or cold-based anti-cancer therapies and optimize genetic analysis devices and electronics design, experts told UPI's Nano World.

No techniques previously existed for measuring temperature in spaces any smaller than a few millimeters, explained researcher Nicholas Kotov, a chemical engineer at the University of Michigan at Ann Arbor. His team's nanothermometers, which are roughly 30 nanometers wide, can gauge temperatures in volumes only 200 nanometers across, he said.

Each nanothermometer is made of a gold particle core 20 nanometers in diameter surrounded by a flexible springy polymer layer topped off with an envelope of several dozen semiconductor particles each about four nanometers wide. The polymer layer contracts with the cold and relaxes in the heat, bringing the nanoparticles closer together or farther apart.

When scanned with lasers, the semiconductor nanoparticles in the nanothermometers get excited. These excitations cause the cloud of electrons surrounding the gold nanoparticles to vibrate in sync. Such vibrations can boost the amount of light the semiconductor nanoparticles emit. The closer the gold and semiconductor nanoparticles are, the more this light boost increases.

By measuring the amount of light the nanothermometers emit in response to a laser scan, scientists can detect temperature changes down to 1 or 2 degrees. The lasers themselves do not significantly heat the nanothermometers, Kotov added. He and his colleagues, theorist Alexander Govorov at Ohio University in Athens and experimentalist Jim Lee at the University of Michigan, presented their findings in the international scientific journal Angewandte Chemie.

While other nanothermometers made with biomolecules and fluorescent compounds exist, those effectively get destroyed after "a few tens of seconds," while Kotov's thermometers ought to prove durable "for very long periods of time," said biophysicist Jan Liphardt at the University of California at Berkeley.

Such nanothermometers could help enhance the accuracy of anti-cancer treatments that rely on heat or cold to kill cancer cells, Kotov said. "The efficacy of these treatments depends on temperature differences of a few degrees, so cells will not die if the difference is as little as 1 degree Fahrenheit," he explained. "Nanothermometers could help doctors adjust their treatments accordingly to carve away the cancer completely or to not attack normal cells."

Nanothermometers could also help scientists regulate temperatures in microfluidic arrays, which include miniaturized genetic and protein analysis devices. "If you visited a lab, you would see probably 20 to 50 devices a room designed to carefully control or measure the temperature," Kotov said. "If you want to shrink everything down dramatically to a lab-on-a-chip, as is commonly getting done nowadays, you would need to shrink the thermometers down as well.

"If the temperatures across these arrays vary by several degrees, this will result in quite substantial changes to the reaction rates," Kotov added.

Moreover, as electronics researchers invent new ways to draw heat from microchips to keep them from overheating, they could use nanothermometers to ensure they come up with the best designs. "The energy density of nanocircuits is approaching the energy density of a nuclear reactor. It's amazing how much heat there can be in such small volumes," Kotov said.

In the future, Liphardt noted the springy heat-sensitive polymer Kotov and his colleagues used in their nanothermometers could be replaced by other polymers that respond in other ways, such as to pH levels or certain genetic sequences, for any number of different kinds of sensors.

Copyright 2005 by United Press International

Explore further: A new way to convert light to electrical energy

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

A new way to convert light to electrical energy

8 hours ago

The conversion of optical power to an electrical potential is of general interest for energy applications, and is typically accomplished by optical excitation of semiconductor materials. A research team has developed a new ...

Tiny carbon nanotube pores make big impact

Oct 29, 2014

A team led by the Lawrence Livermore scientists has created a new kind of ion channel based on short carbon nanotubes, which can be inserted into synthetic bilayers and live cell membranes to form tiny pores ...

Nanosafety research: The quest for the gold standard

Oct 29, 2014

Empa toxicologist Harald Krug has lambasted his colleagues in the journal Angewandte Chemie. He evaluated several thousand studies on the risks associated with nanoparticles and discovered no end of shortc ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.