Researchers clarify cellular uptake mechanisms for carbon nanotubes

Nov 30, 2005

They look like the tiniest of needles and have the potential to channel pharmaceutical agents into targeted living cells: carbon nanotubes are long, thin, nanoscale tubes made of one (or more) layers of carbon atoms in a graphite-like arrangement. Drugs can be hooked on to their exteriors and can thus be carried into the cell along with the nanotube. But how?

Hongjie Dai and his team at Stanford University have systematically examined the cellular uptake mechanism for nanotubes with various biological cargos including DNA and proteins.

In order to develop tailored nano-transporters that duly deliver their cargo, it is important to know which route they take through the cell membrane. Molecules can get into the interior of a cell by various means. First, the researchers needed to determine if this is a case of active or passive transport. The passive transport mechanisms do not consume energy; molecules just pass the membrane.

Regarding active mechanisms, nanotubes might enter the cell by so-called endocytosis: Parts of the cell membrane include the molecules and migrate into the interior. This requires energy in the form of ATP and sufficiently high temperatures. Dai and his colleagues cooled some cell cultures and reacted others with an inhibitor that stops ATP production. In both cases the cells were no longer able to absorb nanotubes. “We conclude that this is an energy-dependent endocytosis mechanism,” says Dai. For the nanotubes, among the different types of endocytosis pathways the researchers thought two mechanisms in particular seemed likely: caveolae-mediated and clathrin-dependent endocytosis.

Caveolae are little indentations made of lipids in the cell membrane. Molecules from the medium enter the indentation, which then closes itself off into a bubble that migrates into the cell interior. By means of inhibitors, the researchers disrupted the lipid distribution in the cell membrane, thus disrupting the caveolae—this did not prevent intake of the nanotubes. The clathrin-dependent mechanism involves the docking of molecules from the medium at special docking stations on the exterior of the membrane. Tripod-shaped protein molecules, clathrin, are bound to the docking site inside the membrane.

The clathrin molecules aggregate into a two-dimensional network that forms an arch that results in a cavity in the membrane. This again results in a bubble that closes itself off and wanders into the interior of the cell. Sugar-containing or potassium-free media destroy clathrin sheets. The cell cultures were thus placed under these conditions and were no longer able to absorb the nanotubes. Says Dai, “This clearly indicates clathrin-dependent endocytosis for carbon nanotubes used in our work.” This result contradicts the results of another group who propose a non-endocytotic mechanism. The reasons for the discrepancy have yet to be determined.

Source: Angewandte Chemie

Explore further: Nanoparticles give up forensic secrets

add to favorites email to friend print save as pdf

Related Stories

Nanotech drug smugglers

Nov 12, 2013

Tiny capsules of carbon are invisible to the chemical gatekeeper that flushes potentially harmful substances out of our bodies' cells, according to research published in the International Journal of Computational Biology an ...

Grafting olfactory receptors onto nanotubes

Jul 26, 2011

(PhysOrg.com) -- Penn researchers have helped develop a nanotech device that combines carbon nanotubes with olfactory receptor proteins, the cell components in the nose that detect odors.

Nanotubes: Cellular membranes on supply

Mar 11, 2011

(PhysOrg.com) -- When unfolding a tent for the first time, you may wonder how the huge tarpaulin fits into a bag the size of a football. Biologists wonder about something similar: when a cell divides, the ...

Recommended for you

Nanoparticles give up forensic secrets

11 hours ago

A group of researchers from Switzerland has thrown light on the precise mechanisms responsible for the impressive ability of nanoparticles to detect fingermarks left at crime scenes.

New absorber will lead to better biosensors

18 hours ago

Biological sensors, or biosensors, are like technological canaries in the coalmine. By converting a biological response into an optical or electrical signal, they can alert us to dangers in our external and internal environments. ...

'Stealth' nanoparticles could improve cancer vaccines

21 hours ago

Cancer vaccines have recently emerged as a promising approach for killing tumor cells before they spread. But so far, most clinical candidates haven't worked that well. Now, scientists have developed a new ...

Nanoparticles accumulate quickly in wetland sediment

21 hours ago

(Phys.org) —A Duke University team has found that nanoparticles called single-walled carbon nanotubes accumulate quickly in the bottom sediments of an experimental wetland setting, an action they say could ...

User comments : 0