Adenine ‘Tails’ Make Tailored Anchors for DNA

Dec 22, 2006
Adenine ‘Tails’ Make Tailored Anchors for DNA
Single-strand DNA can be anchored to a gold substrate for use in biodetectors by attaching a tail of adenine bases. Adenine's strong affinity for gold not only bonds the strands in place but also allows some control over the spacing by adjusting the length of the tail. Credit: NIST

Researchers from the National Institute of Standards and Technology, the Naval Research Laboratory and the University of Maryland have demonstrated a deceptively simple technique for chemically bonding single strands of DNA to gold.

Among other features, they report in a forthcoming issue of the Proceedings of the National Academy of Sciences, the technique offers a convenient way to control the density of the DNA strands on the substrate, which could be important for optimizing DNA sensor arrays.

Short DNA sequences arrayed on substrates like glass, silicon or gold are used in biochemical sensors that can detect specific “target” sequences of DNA or analyze complex sequences. In such arrays, DNA strands are attached to the substrate by one end and stand up like bristles on a brush.

Specific “target” DNA sequences from a test sample can be identified because they will bond (hybridize) only to a complementary sequence on the array—microarray “gene chips” are the best-known example of the technology. The properties of gold are well-known, so it is a practicaland convenient substrate for some sensors. One popular technique for making DNA sensors (developed at NIST) is to use DNA with a sulfur atom attached to one end, which acts as “glue” because sulfur readily reacts with gold.

But a potentially less expensive and even simpler approach, according to the NIST, NRL and UMD team, might be to use a string of adenine nucleotides as an anchor. Of the four nucleotides that comprise DNA molecules, adenine, turns out to have a particularly high affinity for gold. Short strands composed entirely of adenine will adhere to a gold surface even if they have to muscle aside other strands in the process.

As a result, say the researchers, short blocks of adenine at the end of DNA strands can serve as bonding anchors—but even better, they say, these adenine blocks can be used to control the spacing of the DNA strands on the substrate. This is because each adenine tail lies flat on the substrate, taking up space. Within limits, the longer the adenine tail is, the larger is its footprint on the substrate, and the lower the total density of DNA strands.

Controlling the density of DNA “brushes” on a substrate is important for sensor design because an overly dense thicket does not leave enough room for “target” DNA strands from the test sample to bond, while too sparse an array doesn’t produce a strong enough signal.

The authors have applied for a patent on the technique.

Citation: A. Opdahl, D. Petrovykh, H. Kimura-Suda, M.J. Tarlov and L.J. Whitman. Independent control of grafting density and conformation of single-stranded DNA brushes. Proceedings of the National Academy of Sciences, 104:9-14 (2007) (Appears on-line in PNAS Early Edition.)

Source: NIST

Explore further: Team pioneers strategy for creating new materials

add to favorites email to friend print save as pdf

Related Stories

Crowdsourced RNA designs outperform computer algorithms

Jan 27, 2014

An enthusiastic group of non-experts, working through an online interface and receiving feedback from lab experiments, has produced designs for RNA molecules that are consistently more successful than those generated by the ...

Recommended for you

Team pioneers strategy for creating new materials

Aug 29, 2014

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Plug n' Play protein crystals

Aug 29, 2014

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the ...

Protein glue shows potential for use with biomaterials

Aug 28, 2014

Researchers at the University of Milan in Italy have shown that a synthetic protein called AGMA1 has the potential to promote the adhesion of brain cells in a laboratory setting. This could prove helpful ...

User comments : 0