Spirit Marks 1st Martian Year

Nov 21, 2005
Spirit. This image taken by the front hazard-identification camera on the Mars Exploration Rover Spirit, shows the rover's robot

Spirit, the untiring robotic "wonder child" sent by NASA to explore the eerily earthlike fourth planet from the sun, has completed one martian year--that's almost two Earth years--on Mars. Designed to last only 90 martian days (sols), the six-wheeled marvel the size of a golf cart has pursued a steady course of solar-driven geologic fieldwork, bringing back some 70,000 images and a new understanding of Mars as a potential habitat.

During Spirit's martian year, the seasons have changed from summer to winter and back again. In its orbit around the Sun, Mars has returned to where it was when the rover first landed. Having survived seven times its expected lifetime and traveling over 3 miles (about 5,000 meters), Spirit is still going strong.

Hill Climbing with Spirit

"When we first took a look around after landing," noted Cornell geologist and principal investigator Steve Squyres, "the 'Columbia Hills' seemed impossibly far away. Given its longer life, though, Spirit reached them and became the first explorer to climb a mountain on another planet. 'Husband Hill' is about as tall as the Statue of Liberty, but for a little rover, that was a heck of a climb."

To achieve that feat, Spirit's handlers painstakingly plotted a path up the slopes to keep the rover alive during the colder months of the martian year. A few months into the mission, winter was fast approaching and the Sun was ever lower above the northern horizon.

NASA's Durable Spirit Sends Intriguing New Images From Mars

"We followed a circuitous path uphill, using the higher, uneven terrain to tilt the solar panels toward the Sun, keep the communications antenna facing Earth, and avoid rocks along the way," said rover driver Chris Leger at NASA's Jet Propulsion Laboratory.

While keeping warm in the winter, Spirit's uphill battle also centered on what NASA sent both rovers to find: signs of past water on Mars. If water persisted for long periods of time in martian history, the red planet might have once had a life-supporting environment. At first, Spirit's studies showed plenty of volcanic rocks, but few signs of minerals formed by water.

"Only by climbing did Spirit find what we were seeking," said Ray Arvidson, deputy principal investigator from Washington University in St. Louis. "With Spirit's engineering stamina, we finally found rocks in the 'Columbia Hills' that either formed in, or were altered by, water. Perhaps best of all, the hills hold the highest sulfur content ever found on Mars: sulfate salts, deposited by water."

Besides finding these prized signs of past water on Mars, Spirit has discovered at least five distinct classes of rocks. Among these are molten rocks blasted upward and outward during meteorite impacts, materials formed during violent volcanic explosions, and lava flows. Beyond these large features, Spirit has taken a close look at grain-sized rock particles as well. "At a small scale, the geology of 'Husband Hill' looks like it's been put in a blender," said Squyres.

"All of this variety churned up in the rock record shows how volatile Mars was in the past," Arvidson says. "Rocks in one layer say volcanoes were exploding, in another that lava was flowing, in another that water was seeping. And then imagine that some massive geologic force uplifted the whole of 'Columbia Hills,' exposing all of these layers to millions of years of wind erosion, gravity-driven landslides, and meteorite impacts."

Seeing this rich geologic record on the north side of the Columbia Hills, Arvidson says, heightens the science team's anticipation of what more they will learn about the history of the hills during Spirit's trek down the other side.

Raising Spirit's Energy

For Spirit's continued journey, engineers are delighted with the unlikely role the martian wind has played in increasing the rover's staying power. A peak threat of wind is the planet-encircling dust storms that can arise in martian spring through early summer, blocking out sunlight needed for power. "Luckily,” said project scientist Joy Crisp, "we haven’t yet seen a global dust storm since the rovers landed on Mars, but we have seen a lot of dust devils."

Dust devils occur when the wind whirls over the surface, stirring dust up like a miniature tornado and traveling up to 13 feet per second (4 meters per second). It turns out the dust devils are primarily a lunchtime affair, mostly occurring between 11 a.m. and 3 p.m. at each rover site. For both rovers, these noontime winds have been very favorable.

While dozens of dust devils have passed before Spirit's cameras, some have made contact, sweeping dust from the rover's solar panels. The solar panels are then able to take in more sunlight and convert it into electricity, keeping Spirit "alive" for even longer.

Keeping Spirit Alive

While no one can predict how long Spirit will last, the rover's stamina throughout the long martian year encourages hope. The science team is busy even now plotting new destinations to strive toward. If the "Columbia Hills" were once a distant dream, new far-off horizons beckon just as much. Getting there will stretch the rover's capabilities as much as the imagination. Team member Jim Rice calls one such distant target, a rough and rugged terrain to the south, "the Promised Land."

One thing is sure. No matter what the future holds, Spirit is already there.

Source: NASA (by Susan Watanabe)

Explore further: Bacteria manipulate salt to build shelters to hibernate

add to favorites email to friend print save as pdf

Related Stories

Opportunity peers out from 'Pillinger Point'

Jun 17, 2014

NASA's decade old Opportunity rover has reached a long sought after region of aluminum-rich clay mineral outcrops at a new Endeavour crater ridge now "named 'Pillinger Point' after Colin Pillinger the Principal ...

NASA rover gains Martian vista from ridgeline

May 20, 2014

The rim surrounding Endeavour Crater on Mars recedes southward, then sweeps around to the east in a vista obtained by NASA's Mars Exploration Rover Opportunity. The view is from high on the south end of the ...

Against the current with lava flows

May 12, 2014

Primeval lava flows formed the massive canyons and gorge systems on Mars. Water, by contrast, was far too scarce on the red planet to have cut these gigantic valleys into the landscape. This is the conclusion ...

Spirit rover's wheels stuck in soft Martian dirt

May 12, 2009

(PhysOrg.com) -- The five wheels that still rotate on NASA's Mars Exploration Rover Spirit have been slipping severely in soft soil during recent attempts to drive, sinking the wheels about halfway into the ...

Recommended for you

Giant crater in Russia's far north sparks mystery

1 hour ago

A vast crater discovered in a remote region of Siberia known to locals as "the end of the world" is causing a sensation in Russia, with a group of scientists being sent to investigate.

NASA Mars spacecraft prepare for close comet flyby

2 hours ago

NASA is taking steps to protect its Mars orbiters, while preserving opportunities to gather valuable scientific data, as Comet C/2013 A1 Siding Spring heads toward a close flyby of Mars on Oct. 19.

Bacteria manipulate salt to build shelters to hibernate

18 hours ago

For the first time, Spanish researchers have detected an unknown interaction between microorganisms and salt. When Escherichia coli cells are introduced into a droplet of salt water and is left to dry, b ...

How do we terraform Venus?

18 hours ago

It might be possible to terraform Venus some day, when our technology gets good enough. The challenges for Venus are totally different than for Mars. How will we need to fix Venus?

Biomarkers of the deep

20 hours ago

Tucked away in the southwest corner of Spain is a unique geological site that has fascinated astrobiologists for decades. The Iberian Pyrite Belt (IPB) in Spain's Río Tinto area is the largest known deposit ...

Image: Chandra's view of the Tycho Supernova remnant

22 hours ago

More than four centuries after Danish astronomer Tycho Brahe first observed the supernova that bears his name, the supernova remnant it created is now a bright source of X-rays. The supersonic expansion of ...

User comments : 0