Fluids race through nearly frictionless carbon nanotubes

Nov 11, 2005
Fluids race through nearly frictionless carbon nanotubes

Within the cells of our bodies, fluids flow rapidly through miniscule, nearly frictionless, protein channels. Until now, human-made nanoscale structures have not been able to mimic those same speeds because the fluids flow slowly along the walls of the tiny structures.

Image: In this illustration, water travels through carbon nanotubes at a rate 10,000 to 100,000 times faster than models predict. Credit: M. Denomme, University of Kentucky

Researchers have now found that carbon nanotubes only 7 billionths of a meter in diameter can channel many fluids nearly friction free. With some fluids, the interiors of the tubes were so slippery that substances sailed through 10,000-100,000 times faster than models had predicted.

For the experiments, chemical and materials engineers Bruce Hinds, a National Science Foundation CAREER awardee, Mainak Majumder, Nitin Chopra and Rodney Andrews of the University of Kentucky fabricated membranes made from billions of aligned carbon nanotubes. The fabrication techniques easily adapt to large-scale production, which is important for industries that could use such membranes for separating commodity chemicals.

Hinds and his colleagues crafted the membranes so that each side can have different chemical properties. As a result, the selective membrane could one day be used to deliver drugs through the skin or in specialized chemical sensors.

The findings appeared in the Oct. 3, 2005, issue of the journal Nature.

Source: NSF

Explore further: Combining magnetism and light to fight cancer

Related Stories

Fluid-filled pores separate materials with precision

Mar 06, 2015

In nature, pores can continuously control how a living organism absorbs or excretes fluids, vapors and solids in response to its environment; for example, tiny holes invisible to the naked eye called stomata ...

Carbon nanotube membranes allow super-fast fluid flow

Nov 03, 2005

Membranes composed of manmade carbon nanotubes permit a fluid flow nearly 10,000 to 100,000 times faster than conventional fluid flow theory would predict because of the nanotubes' nearly friction-free surface, researchers ...

New math model examines mixing fronts in porous media flows

Dec 03, 2014

Analyzing what happens where interfaces meet and mix is essential toward understanding and controlling fundamental mechanisms in both natural and industrial systems. By considering the reaction front of heterogeneous ...

Recommended for you

Combining magnetism and light to fight cancer

5 minutes ago

By combining, in a liposome, magnetic nanoparticles and photosensitizers that are simultaneously and remotely activated by external physical stimuli (a magnetic field and light), scientists at the Laboratoire ...

Natural nanocrystals shown to strengthen concrete

19 hours ago

Cellulose nanocrystals derived from industrial byproducts have been shown to increase the strength of concrete, representing a potential renewable additive to improve the ubiquitous construction material.

From tobacco to cyberwood

Mar 30, 2015

Swiss scientists from ETH Zurich have developed a thermometer that is at least 100 times more sensitive than previous temperature sensors. It consists of a bio-synthetic hybrid material of tobacco cells and nanotubes.

Scientists convert microbubbles to nanoparticles

Mar 30, 2015

Biomedical researchers led by Dr. Gang Zheng at Princess Margaret Cancer Centre have successfully converted microbubble technology already used in diagnostic imaging into nanoparticles that stay trapped in tumours to potentially ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.