Fluids race through nearly frictionless carbon nanotubes

Nov 11, 2005
Fluids race through nearly frictionless carbon nanotubes

Within the cells of our bodies, fluids flow rapidly through miniscule, nearly frictionless, protein channels. Until now, human-made nanoscale structures have not been able to mimic those same speeds because the fluids flow slowly along the walls of the tiny structures.

Image: In this illustration, water travels through carbon nanotubes at a rate 10,000 to 100,000 times faster than models predict. Credit: M. Denomme, University of Kentucky

Researchers have now found that carbon nanotubes only 7 billionths of a meter in diameter can channel many fluids nearly friction free. With some fluids, the interiors of the tubes were so slippery that substances sailed through 10,000-100,000 times faster than models had predicted.

For the experiments, chemical and materials engineers Bruce Hinds, a National Science Foundation CAREER awardee, Mainak Majumder, Nitin Chopra and Rodney Andrews of the University of Kentucky fabricated membranes made from billions of aligned carbon nanotubes. The fabrication techniques easily adapt to large-scale production, which is important for industries that could use such membranes for separating commodity chemicals.

Hinds and his colleagues crafted the membranes so that each side can have different chemical properties. As a result, the selective membrane could one day be used to deliver drugs through the skin or in specialized chemical sensors.

The findings appeared in the Oct. 3, 2005, issue of the journal Nature.

Source: NSF

Explore further: Carbyne morphs when stretched: Calculations show carbon-atom chain would go metal to semiconductor

add to favorites email to friend print save as pdf

Related Stories

Carbon nanotube membranes allow super-fast fluid flow

Nov 03, 2005

Membranes composed of manmade carbon nanotubes permit a fluid flow nearly 10,000 to 100,000 times faster than conventional fluid flow theory would predict because of the nanotubes' nearly friction-free surface, researchers ...

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Recommended for you

First ab initio method for characterizing hot carriers

Jul 17, 2014

One of the major road blocks to the design and development of new, more efficient solar cells may have been cleared. Researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) have developed ...

User comments : 0