Different strategies underlie the ecology of microbial invasions

Oct 23, 2006

Infectious disease can play a key role in mediating the outcome of competition between rival groups, as seen in the effects of disease-bearing conquistadors in the New World--or, on a much smaller ecological scale, the ability of bacteria to spread their viruses to competing bacteria.

In a new study, researchers have compared two different general ways in which bacteria compete with one another, and they have found that each strategy seems to be particularly effective under different ecological circumstances--for example, depending on whether the bacteria are rare invaders or abundant residents. The findings, reported by a group of researchers including Sam P. Brown of the University of Texas at Austin, Cambridge University, and University of Montpellier II, and François Taddei of University of Paris, appear in the October 24th issue of Current Biology.

Bacteria are not always so fortunate as to grow alone in their environment, and they often face competition from other lineages. One widespread solution is to kill these competitors.

In the new work, the researchers explored the relative value to both invading and defensive bacteria of two distinct microbial mechanisms of killing competitors: through the release of chemicals (for example, antibiotics or bacteriocins) and through the release of parasites (for example, bacterial viruses, known as phages). Focusing on the second mechanism in an experimental setting, the researchers showed that even though some of the invading bacteria can be killed by their own phage parasites, upon their death they release a burst of infectious parasites that can kill competitor bacteria.

Unlike chemical killing, released parasites trigger an epidemic among susceptible competitors, which become factories producing more parasites. Amplification therefore makes phage carriers able to successfully compete with phage-susceptible bacteria even faster when the carriers are rare, whereas chemical killers can only win in a well-mixed environment when chemical carriers are sufficiently abundant. The findings show that the release of chemical toxins is superior as a resident strategy to repel invasions, whereas the release of parasites is superior as a strategy of invasion.

Citation: Brown et al.: "Ecology of Microbial Invasions: Amplification Allows Virus Carriers to Invade More Rapidly When Rare." Publishing in Current Biology 16, 2048–2052, October 24, 2006 DOI 10.1016/j.cub.2006.08.089

Source: Cell Press

Explore further: 'Office life' of bacteria may be their weak spot

add to favorites email to friend print save as pdf

Related Stories

Scientists map protein in living bacterial cells

Sep 04, 2014

(Phys.org) —Scientists have for the first time mapped the atomic structure of a protein within a living cell. The technique, which peered into cells with an X-ray laser, could allow scientists to explore ...

The energetic origins of life

Jun 12, 2014

(Phys.org) —Imagination is perhaps the most powerful tool we have for creating the future. The same might be said when it comes to creating the past, especially as it pertains to origin of life. Under what ...

Symbiosis: enforced surrender?

May 20, 2014

Scientists from INRA and Lorraine University in France unraveled a key mechanism in the symbiosis between fungi and trees. During this mutually beneficial interaction, the fungus takes control of its host ...

Recommended for you

Transparent larvae hide opaque eyes behind reflections

1 hour ago

Becoming invisible is probably the ultimate form of camouflage: you don't just blend in, the background shows through you. And this strategy is not as uncommon as you might think. Kathryn Feller, from the University of Maryland ...

Peacock's train is not such a drag

2 hours ago

The magnificent plumage of the peacock may not be quite the sacrifice to love that it appears to be, University of Leeds researchers have discovered.

Iberian pig genome remains unchanged after five centuries

7 hours ago

A team of Spanish researchers have obtained the first partial genome sequence of an ancient pig. Extracted from a sixteenth century pig found at the site of the Montsoriu Castle in Girona, the data obtained indicates that ...

User comments : 0