An Infectious Agent of Deception, Exposed Through Proteomics

Sep 29, 2006

Salmonella bacteria, infamous for food poisoning that kills hundreds of thousands worldwide, infect by stealth. They slip unnoticed into and multiply inside macrophages, the very immune system cells the body relies on to seek and destroy invading microbes.

Just how Salmonella escapes detection by macrophages, turning predator cells to prey complicit in promoting infection, has seemed impossibly complicated, a needle-in-a-haystack proposition involving thousands of proteins, the building blocks that carry out cells’ vital functions.

Applying the high-volume sorting and analytical power of proteomics—a detailed survey of microbial proteins present in the 24 hours that follow mouse-macrophage infection—a team led by Liang Shi of the Department of Energy’s Pacific Northwest National Laboratory in Richland, Wash., has turned up a suspect protein.

The discovery of the protein, dubbed STM3117, is detailed today (Sept. 29) in The Journal of Biological Chemistry. Knocking out the gene that codes for STM3117, the researchers subsequently crippled the microbe’s ability to multiply inside macrophages. Shi and colleagues say the protein and two closely related proteins discovered in the study are similar in genetic sequence to those known to make and modify chemicals in the microbe’s cell wall called peptidoglycan.

Drug and vaccine designers armed with this mouse-model information can target chemicals or immune responses that disrupt peptidoglycan synthesis and other processes linked to Salmonella’s colonization of macrophages in humans, said Joshua Adkins, a co-author on Shi’s paper and lead author of a related study in Molecular & Cellular Proteomics last month. A quick identification of these proteins, Adkins added, could help physicians assess the virulence of a given strain.

The candidate proteins were winnowed from among 315 possibilities that emerged through a combination of techniques, culminating in measurements by Fourier-transform mass spectrometry, or FT-MS. A suite of FT-MS instruments customized by co-author and PNNL-based Battelle Fellow Richard D. Smith enabled the team to rapidly separate and identify many proteins at once even as macrophages were being infected.

Most of the initial candidates were designated “house-keeping” proteins, or those whose numbers relative to other proteins remained more or less constant during the course of infection. But 39 proteins shot up in number during bacterial colonization of macrophages, and of those, a handful or so—including STM3117—responded specifically to a macrophage protein associated with resistance to microbial infection. A standard assay called Western blot confirmed the abundance increases of that small group of proteins during infection.

Source: Pacific Northwest National Laboratory

Explore further: First structural insights into how plant immune receptors interact

add to favorites email to friend print save as pdf

Related Stories

Revealing camouflaged bacteria

Apr 16, 2014

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

Research team implants human innate immune cells in mice

Mar 18, 2014

(Phys.org) —Overcoming a major limitation to the study of the origins and progress of human disease, Yale researchers report that they have transplanted human innate immune cells into mouse models, which ...

A secret to making macrophages (w/ Video)

Jul 18, 2013

Biologists at the California Institute of Technology (Caltech) have worked out the details of a mechanism that leads undifferentiated blood stem cells to become macrophages—immune cells that attack bacteria ...

Making viruses pass for 'safe'

Mar 08, 2011

Viruses can penetrate every part of the body, making them potentially good tools for gene therapy or drug delivery. But with our immune system primed to seek and destroy these foreign invaders, delivering therapies with viruses ...

An Alzheimer's vaccine in a nasal spray

Feb 28, 2011

One in eight Americans will fall prey to Alzheimer's disease at some point in their life, current statistics say. Because Alzheimer's is associated with vascular damage in the brain, many of them will succumb through a painful ...

Recommended for you

Orchid named after UC Riverside researcher

1 hour ago

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

For resetting circadian rhythms, neural cooperation is key

2 hours ago

Fruit flies are pretty predictable when it comes to scheduling their days, with peaks of activity at dawn and dusk and rest times in between. Now, researchers reporting in the Cell Press journal Cell Reports on April 17th h ...

User comments : 0

More news stories

Orchid named after UC Riverside researcher

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...