Self-organized, one-dimensional Pt nanowires on Ge(001)

May 19, 2004
Pt nanowires on Ge (001)

Oguzhan Gurlu and a group of scientists from University of Twente, Netherlands report about formation of Pt nanowires on Ge (001). Pt atoms adsorbed onto Ge(001) surface form extremely well-ordered nanowire arrays by self-organization after high-temperature annealing. Using scanning tunneling spectroscopy and microscopy, authors show that they are metallic and defect free. Nanowires are only 0.4 nm thick with a spacing of 1.6 nm in between, and have aspect ratios up to 1000. (Updated*)

The growing activity in the interdisciplinary area of nanometre-scale science and technology can be traced to the ever-increasing quest for the miniaturization of electronic devices, driven by the need for faster and more powerful electronics. In addition to the importance of developing new generation electronics, materials on the nanoscale often exhibit interesting quantum phenomena.

One of the examples is the electrical conductance of a metallic nanowire. Because the size of the wire is comparable to the Fermi wavelength of the conducting electrons in metal, the electrons transport ballistically along the wire and form well-defined quantum modes in the transverse direction. Such nanowires may be used as conductors and as single-atom digital switches in nanoelectronic circuits. The conductance quantization is sensitive to the adsorption of a molecule onto the nanowire which may lead to applications in chemical sensors.

Two-dimensional systems display magnetic properties distinct from bulk materials.
Co nanowires grown at Pt step edges are shown to possess unexpected magnetic properties.

However, with respect to procedures and materials used, producing nanowires is far from being trivial.

There are several problems and drawbacks that almost all techniques or produced wires suffer from.
Some require exotic elements or surfaces to form, while others do not order well or contain a lot of defects. Having unvarnished one dimensionality as well as high aspect ratio is another problem. Although metallicity is usually expected from nanowires for unusual observations, only a few may qualify to be so while missing other properties.

Authors present the formation of one-atom-thick, up to 380-nm-long, absolutely defect-free, metallic nanowires, formed by self-organization of Pt atoms on Ge(001) surface.
They studied the behavior of these nanowires, after annealing at temperatures >1000 K, using STM and STS and observed the formation of one-dimensional, defect-free, metallic nanowires with high aspect ratios.

Authors claim that Pt nanowires formation can be discussed in terms of a relativistic property possessed by heaviest 5d elements, and the pathway to their formation can be explained by dimer breakup on Ge(001) surface at elevated temperatures followed by a surface polymerization reaction.

Read the article in Applied Physics Letters (Vol 83, 22, pp. 4610-4612)

* This news review was updated after an author of the article Oguzhan Gurlu contacted PhysOrg.com and provided an STM image of Pt nanowires on Ge (001). You can use a unique opportunity to ask your questions and discuss this publication with the author. We will contact him to answer questions arisen.

Explore further: Team reveals molecular structure of water at gold electrodes

add to favorites email to friend print save as pdf

Related Stories

Cloning whistle-blower: little change in S. Korea

34 minutes ago

The whistle-blower who exposed breakthrough cloning research as a devastating fake says South Korea is still dominated by the values that allowed science fraudster Hwang Woo-suk to become an almost untouchable ...

Glass maker deals to exit Apple, Arizona plant

40 minutes ago

Nearly 2,000 furnaces installed in a factory to make synthetic sapphire glass for Apple Inc. will be removed and sold under a deal between the tech giant and the company that had been gearing up to produce huge amounts of ...

China launches first mission to moon and back

1 hour ago

China launched its first space mission to the moon and back early Friday, authorities said, the latest step forward for Beijing's ambitious programme to one day land a Chinese citizen on the Earth's only ...

Recommended for you

Molecular beacons shine light on how cells 'crawl'

15 hours ago

Adherent cells, the kind that form the architecture of all multi-cellular organisms, are mechanically engineered with precise forces that allow them to move around and stick to things. Proteins called integrin ...

Nanoparticle technology triples the production of biogas

Oct 22, 2014

Researchers of the Catalan Institute of Nanoscience and Nanotechnology (ICN2), a Severo Ochoa Centre of Excellence, and the Universitat Autònoma de Barcelona (UAB) have developed the new BiogàsPlus, a technology which allows ...

User comments : 0