Bacteria beat the heat

Aug 30, 2006

How do some microorganisms manage to exist and even thrive in surroundings ranging from Antarctica to boiling hot springs? A team of scientists from the Weizmann Institute's Plant Sciences Department, led by Prof. Avigdor Scherz, has found that a switch in just two amino acids (the building blocks of protein) can make a difference between functioning best at moderate temperatures and being adapted to living in extreme heat.

The results of their research, which recently appeared in Nature, might have implications for future attempts to adjust crops to differing climate conditions or improve enzyme efficiency in industrial processes.

The team compared two different kinds of bacteria – one found in moderate environments and the other, an intense-heat lover. Both were photosynthetic (that is, using the sun's energy to create sugars for food). The focus of the research was a reaction that takes place in enzymes in the photosynthetic "reaction center" of the bacterial cell. While gradually raising the surrounding temperature, the scientists timed this reaction to see how reaction rates changed as things heated up.

A general rule for enzyme reactions states that as the heat rises, so does the reaction rate. Contrary to this rule, and the scientist's expectations, both reaction rates peaked at a certain point, and remained steady thereafter. For each enzyme, the peak occurred in the bacteria's "comfort zone." Further comparisons of the enzymes, which were nearly identical, turned up differences in just two of the hundreds of amino acids making up the enzyme sequence. When the scientists replaced these two amino acids in the enzyme adapted to the moderate temperatures with those of the heat-loving enzyme, they observed an increase of about 10 degrees in the average temperature at which the reaction rate peaked.

Scherz: "This study shows that enzyme efficiency is tuned to the average temperature of the bacterial habitat, rather than the immediate conditions. This may protect the cells from harmful swings in enzyme activity. We can envision using this knowledge, for instance, to facilitate enzymatic reactions in different applications, enhance crop production in areas subject to extreme temperature changes or create new resources for biofuel production that will not only provide more biomass per acre, but absorb more of the greenhouse gas, carbon dioxide, as well."

Source: American Committee for the Weizmann Institute of Science

Explore further: Dairy farms asked to consider breeding no-horn cows

add to favorites email to friend print save as pdf

Related Stories

Designer's toolkit for dynamic DNA nanomachines

6 hours ago

The latest DNA nanodevices created at the Technische Universitaet Muenchen (TUM)—including a robot with movable arms, a book that opens and closes, a switchable gear, and an actuator—may be intriguing ...

Catalyst destroys common toxic nerve agents quickly

Mar 16, 2015

Northwestern University scientists have developed a robust new material, inspired by biological catalysts, that is extraordinarily effective at destroying toxic nerve agents that are a threat around the globe. First used ...

Why are cacti so juicy? The secret strategy of succulents

Mar 12, 2015

Sunlight, harnessed by plants in the process of photosynthesis, powers almost all life on earth. Special adaptations allow certain plants to store up a battery of carbon dioxide overnight for use in photosynthesis ...

New material captures carbon at half the energy cost

Mar 11, 2015

UC Berkeley chemists have made a major leap forward in carbon-capture technology with a material that can efficiently remove carbon from the ambient air of a submarine as readily as from the polluted emissions ...

New catalyst uses light to convert nitrogen to ammonia

Feb 04, 2015

Northwestern University scientists are the first to develop a catalyst that can perform a remarkable feat found only in nature: take nitrogen from the air and turn it into ammonia under natural conditions. No high temperatures ...

Recommended for you

Dairy farms asked to consider breeding no-horn cows

Mar 28, 2015

Food manufacturers and restaurants are taking the dairy industry by the horns on an animal welfare issue that's long bothered activists but is little known to consumers: the painful removal of budding horn ...

Italian olive tree disease stumps EU

Mar 27, 2015

EU member states are divided on how to stop the spread of a disease affecting olive trees in Italy that could result in around a million being cut down, officials said Friday.

China starts relocating endangered porpoises: Xinhua

Mar 27, 2015

Chinese authorities on Friday began relocating the country's rare finless porpoise population in a bid to revive a species threatened by pollution, overfishing and heavy traffic in their Yangtze River habitat, ...

A long-standing mystery in membrane traffic solved

Mar 27, 2015

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.