'Phonon Hall Effect' Observed

Oct 23, 2005 feature

What effect do magnetic fields have on uncharged particles?
Their effect on charged particles is familiar to every student of physics or electrical engineering. A common example is the Hall Effect, a basic phenomenon of solid state physics. This effect arises in current carrying materials when a magnetic field is applied perpendicular to the current flow.

The Lorentz force of electromagnetism acts perpendicularly to both the current and the magnetic field, establishing a voltage gradient in the material. Intuitively, one would not expect an analogous effect on uncharged particles, which do not couple to magnetic fields though obvious mechanisms like the Lorentz force. Yet in the October 7th issue of Physical Review Letters, French physicists report such an effect with phonons, uncharged units of mechanical excitation in solids. The group dubbed their finding the “phonon hall effect.”

The observed phenomenon is simple to describe. The experimenters induce a thermal current in a small crystal block by clamping two ends of the block with two heaters at different temperatures. They then apply a magnetic field to the material perpendicular to the thermal gradient. Under these conditions the group observed a temperature difference in the material perpendicular to both the original thermal current and the magnetic field. This temperature difference is the phonon hall effect.

The group performed their experiments using crystals of paramagnetic terbium gallium garnet (TGG). TGG makes an ideal material for these experiments because it contains strongly charged ions and large magnetic moments which allow it to strongly couple to magnetic fields. In addition, the material is dielectric, which prevents the phonon hall effect from being overshadowed by other solid state phenomena such as the Righi-Leduc effect. The authors claim that no microscopic theory yet exists to explain the phonon hall effect, although they present a series of macroscopic arguments justifying its existence. This study thus adds another mysterious phenomenon to the rich world of solid state physics.

by Joseph Levine, Copyright 2005 PhysOrg.com

Righi-Leduc Effect

Righi-Leduc Effect is a temperature gradient in the x direction that gives rise to a heat flow in the y direction and vice versa.

This is the thermal analogon to the Hall Effect, which arises if electric conduction is studied in a magnetic field.

Copyright Wikipedia, licensed under the GNU Free Documentation License.

Explore further: 'Comb on a chip' powers new atomic clock design

add to favorites email to friend print save as pdf

Related Stories

Highway for ultracold atoms in light crystals

Jul 09, 2014

When a superconductor is exposed to a magnetic field, a current on its surface appears which creates a counter field that cancels the magnetic field inside the superconductor. This phenomenon, known as "Meissner-Ochsenfeld ...

From pencil marks to quantum computers

Jul 03, 2014

Pick up a pencil. Make a mark on a piece of paper. Congratulations: you are doing cutting-edge condensed matter physics. You might even be making the first mark on the road to quantum computers, according ...

Colliding plates form Kimberley 'Alps' 

Jun 16, 2014

A geological survey has confirmed that a section of the North Australia Craton was forced under its neighbouring tectonic plate and in the process created the hills that stretch from Halls Creek up to Kununurra ...

Neutron star magnetic fields: Not so turbulent?

May 06, 2014

Neutron stars, the extraordinarily dense stellar bodies created when massive stars collapse, are known to host the strongest magnetic fields in the universe—as much as a billion times more powerful than ...

New material for flat semiconductors

Apr 30, 2014

Researchers around the world have been working to harness the unusual properties of graphene, a two-dimensional sheet of carbon atoms. But graphene lacks one important characteristic that would make it even ...

Recommended for you

'Comb on a chip' powers new atomic clock design

1 hour ago

Researchers from the National Institute of Standards and Technology (NIST) and California Institute of Technology (Caltech) have demonstrated a new design for an atomic clock that is based on a chip-scale ...

Quantum leap in lasers brightens future for quantum computing

1 hour ago

Dartmouth scientists and their colleagues have devised a breakthrough laser that uses a single artificial atom to generate and emit particles of light. The laser may play a crucial role in the development of quantum computers, ...

Technique simplifies the creation of high-tech crystals

2 hours ago

Highly purified crystals that split light with uncanny precision are key parts of high-powered lenses, specialized optics and, potentially, computers that manipulate light instead of electricity. But producing ...

A new multi-bit 'spin' for MRAM storage

4 hours ago

Interest in magnetic random access memory (MRAM) is escalating, thanks to demand for fast, low-cost, nonvolatile, low-consumption, secure memory devices. MRAM, which relies on manipulating the magnetization ...

User comments : 0