Wetness-defying water? Physicists discover a paradox: hydrophobic water

Oct 14, 2005

Now you can extend that truism about oil and water to water and itself. Water and water don't always mix, either.
The textbooks say that water readily comes together with other water, open arms of hydrogen clasping oxygen attached to other OH molecules. This is the very definition of "wetness." But scientists at Pacific Northwest National Laboratory have observed a first: a single layer of water--ice grown on a platinum wafer--that gives the cold shoulder to subsequent layers of ice that come into contact with it.

"Water-surface interactions are ubiquitous in nature and play an important role in many technological applications such as catalysis and corrosion," said Greg Kimmel, staff scientist at the Department of Energy lab and lead author of a paper in the current issue (Oct. 15 advance online edition) of Physical Review Letters. "It was assumed that one end of the water molecule would bind to metal, and at the other end would be these nice hydrogen attachment points for the atoms in next layer of water."

A theory out of Cambridge University last year suggested that these attachment points, or "dangling OH's," did not exist, that instead of dangling, the OH's were drawn by the geometry of hexagonal noble-metal surfaces and clung to that.

Kimmel and his co-authors, working at the PNNL-based W.R. Wiley Environmental Molecular Sciences Laboratory, tested the theory with a technique called rare gas physisorption that enlists krypton to probe metal surfaces and water layers on those surfaces. They found that the first single layer of water, or monolayer, wetted the platinum surface as they had expected but "that subsequent layers did not wet the first layer," Kimmel said. "In other words, the first layer of water is hydrophobic."

The results jibe with an earlier Stanford University study that used X-ray adsorption to show that rather than being fixed pointing outward in the dangling position, wet and ready to receive the next water layer, the arms of a water monolayer on a metal surface are double-jointed. They swivel back toward the surface of the metal to find a place to bind. To the water molecules approaching this bent-over-backward surface, the layer has all the attractiveness of a freshly waxed car's hood.

The second layer beads up, but that's not all: Additional water's attraction to that first hydrophobic water monolayer is so weak that 50 or more ice-crystal layers can be piled atop the first until all the so-called non-wetting portions are covered--akin to "the coalescence of water drops on a waxed car in a torrential downpour," said Bruce Kay, PNNL laboratory fellow and co-author with Kimmel and PNNL colleagues Nick Petrik and Zdenek Dohnálek.

Kimmel said that self-loathing water on metal is more than a curiosity and will come as a surprise to many in the field who assumed that water films uniformly cover surfaces. Hundreds of experiments have been done on thin water films grown on metal surfaces to learn such things as how these films affect molecules in which they come into contact and what role heat, light and high-energy radiation play in such interactions.

Source: Pacific Northwest National Laboratory

Explore further: Infrared imaging technique operates at high temperatures

add to favorites email to friend print save as pdf

Related Stories

Water-soluble silicon leads to dissolvable electronics

Jan 15, 2015

(Phys.org)—Researchers working in a materials science lab are literally watching their work disappear before their eyes—but intentionally so. They're developing water-soluble integrated circuits that ...

Scientist tackles mystery of ancient astronomical device

Jan 06, 2015

The shoebox-size chunk of bronze didn't attract much attention when divers retrieved it from an ancient shipwreck off the Greek island of Antikythera in 1901. Archaeologists on the expedition had their hands ...

Recommended for you

Infrared imaging technique operates at high temperatures

Jan 23, 2015

From aerial surveillance to cancer detection, mid-wavelength infrared (MWIR) radiation has a wide range of applications. And as the uses for high-sensitivity, high-resolution imaging continue to expand, MWIR sources are becoming ...

Football physics and the science of Deflategate

Jan 23, 2015

News reports say that 11 of the 12 game balls used by the New England Patriots in their AFC championship game against the Indianapolis Colts were deflated, showing about 2 pounds per square inch (psi) less ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.