Climate change will stress stormwater drainage systems

Oct 11, 2005

The storm that dropped over 10 inches of rain on the Keene, NH area this past weekend will be a more frequent phenomenon due to climate change, according to two New Hampshire researchers. Michael Simpson and Latham Stack headed a research team within the Environmental Studies Department at Antioch New England Graduate School in Keene, NH. Their recently completed study is groundbreaking because it is the first to identify the specific costs required to prepare for the more intense storms induced by climate change.

According to lead scientist Latham Stack, studies of this kind are crucial to helping communities prepare for the impacts of climate change: "Because of the persistence of greenhouse gases in the atmosphere, the impacts of climate change are now unavoidable. We may have a window of opportunity to prepare civil infrastructures. While expensive, these preparations can be affordable if undertaken far enough in advance."

Just days before the storm that hit the City this weekend, the research team reported their findings to Keene's Cities for Climate Protection Steering Committee. The researchers' analysis found that current engineering design specifications for culvert sizing are inadequate to handle the rainfall intensities predicted under climate change. The team's model projected substantial culvert failure in their study area of the White and Black Brook watersheds in the northwest sector of the city.

These culverts will fail because they have insufficient capacity for the increased flow of water coming down the watershed. Undersized culverts act as a dam, causing water to backup and overrun roads. The results are both flooding of neighboring properties and undercutting and erosion damage to culverts and roads.

The research team's rain gauge on Dunbar Street recorded 11.5 inches falling on Keene in 24 hours during this weekend's storm. This amount of rain is almost triple the design standard currently used by engineers to size culverts. The resulting damage and flooding, not only in the study's watersheds but throughout Keene, will have a substantial fiscal impact on the City's budget. The Antioch study estimated the cost of upgrading culverts and found this to be expensive, but comparatively small in relation to costs incurred by the private and public sectors in the wake of the current storm.

Project leader Michael Simpson noted that "Our research focused only on a small section of Keene, NH, but the model we developed to project climate change induced culvert failures could be applied to any region of the world."

This study makes an important contribution to preparing communities for climate change.

Source: Antioch New England Graduate School

Explore further: Planck: Gravitational waves remain elusive

add to favorites email to friend print save as pdf

Related Stories

Projections for climate change in Vermont

Sep 15, 2014

Here's your northern Vermont forecast for the rest of this century: Annual precipitation will increase by between a third and half an inch per decade, while average temperatures will rise some five degrees ...

Climate change and the future of Mono Lake

Dec 13, 2013

Guleed Ali pauses to study his notebook, standing on a steep slope covered in gray volcanic ash and desert brush, high above the present-day shore of Mono Lake in eastern California. He looks across the slope ...

Recommended for you

Planck: Gravitational waves remain elusive

Jan 30, 2015

Despite earlier reports of a possible detection, a joint analysis of data from ESA's Planck satellite and the ground-based BICEP2 and Keck Array experiments has found no conclusive evidence of primordial ...

Going a long way to do a quick data collection

Jan 30, 2015

Like many a scientist before me, I have spent this week trying to grow a crystal. I wasn't fussy, it didn't have to be a single crystal – a smush of something would have done – just as long as it had ...

How are planets formed?

Jan 30, 2015

How did the Solar System's planets come to be? The leading theory is something known as the "protoplanet hypothesis", which essentially says that very small objects stuck to each other and grew bigger and ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.