Unlocking the organic composition of ancient asteroids

Oct 07, 2005 feature

New technology discovers primitive organic matter in 4.5 billion year old meteorites

Meteorites contain fragments of asteroids brought about by collisions within the asteroid belt. These meteorites have not been exposed to geological processes experienced by planets and stars. Therefore, much of the matter in these meteorites originates from the formation of the Solar System some 4.5 billion years ago.

Being the only record of the Solar System’s pre-biotic chemical evolution, scientists have tried for years to extract and study this material. It is believed that discovering the composition of meteorites will reveal what the Solar System was made of at its birth and how those materials evolved into our current-day universe.

Most of the methods used to extract this matter have failed leading to the destruction of the meteorite material or just the inability to extract any compounds.

However, a recent study from the Planetary and Space Science Journal explains how scientists have developed a novel approach to extracting these meteoric materials. It’s called hydropyrolysis.

This new technology uses high hydrogen gas pressures, extreme temperature, and water as a non-destructive means for extracting organic and inorganic compounds from meteorites.

This process has revealed high amounts of carbon and nitrogen- elements essential to life at the core of the meteorites. Also, this new technology revealed several never-before-seen organic molecules.

The results of this study also contradict a common understanding to the origin of meteorites. It is thought that meteoric material originated from a molecular could that collapsed to form the Solar System. Scientists using hydropyrolysis believe this is a misconception and seek to use this technology to find the true origin of the organic matter in meteorites.

Scientists hope that the use of this new technology will offer even more clues into the composition of the Solar System when it was forming.

Finally researchers have a way to trace the evolutionary path of organic compounds which will ultimately lead to knowledge of the evolution of our universe.

Reference:
Sephton M, Love G, Meredith W, Snape C, Sun C, and Watson J. 2005. Planetary and Space Science Journal. Article in Press.

by Gina Buss, Copyright 2005 PhysOrg.com

Explore further: Bad weather delays Japan asteroid probe lift off

add to favorites email to friend print save as pdf

Related Stories

The Rosetta lander detects organic matter

Nov 19, 2014

Scientists working with data sent back by the now-slumbering Philae lander have announced the discovery of organic molecules on the comet 67P/Churyumov-Gerasimenko. ...

Q&A: How life might expand in the universe

May 16, 2014

Michael Mautner, Ph.D., a research professor of chemistry in the Virginia Commonwealth University College of Humanities and Sciences, studies how life might expand beyond Earth, using meteorites to find how ...

Recommended for you

Orion on track at T MINUS 1 Week to first blastoff

10 hours ago

At T MINUS 1 Week on this Thanksgiving Holiday, all launch processing events remain on track for the first blast off of NASA's new Orion crew vehicle on Dec. 4, 2014 which marks the first step on the long ...

Staying warm: The hot gas in clusters of galaxies

12 hours ago

Most galaxies lie in clusters, groupings of a few to many thousands of galaxies. Our Milky Way galaxy itself is a member of the "Local Group," a band of about fifty galaxies whose other large member is the ...

Bad weather delays Japan asteroid probe lift off

16 hours ago

Bad weather will delay the launch of a Japanese space probe on a six-year mission to mine a distant asteroid, just weeks after a European spacecraft's historic landing on a comet captivated the world.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.