Machines making other machines: new twist on self-replication

Oct 03, 2005 feature

How can we best build self-replicating machines? The past few decades have witnessed self-replicating virtual automata, ranging from the benign Game of Life by Conway to malicious computer viruses. Self-replicating physical constructs are, however, currently both delicate and rare. The work of mathematicians such as John von Neumann and Roger Penrose, around the birth of automata theory in the middle of the past century, revealed no limits in principle to constructing such devices. The main obstacles appear to be the substantial engineering challenges.

Engineers at the Massachusetts Institute of Technology recently tackled a key challenge: how can a machine replicate properly if its components appear at random? Living cells face a similar problem when duplicating their DNA from randomly diffusing chemical components. To address this issue, the group fabricated a simple self replicating machine that dealt robustly with randomly available input components.

The MIT design consists small robotic blocks which link to one another using actuated hooks. A specific ordered linkage of blocks makes up a correctly formed device. A large number of individual blocks sit on a low-friction air-table, which shakes to move them about randomly. Each block carries both sensors to identify blocks around it and a program specifying which blocks to attach to and which to ignore. Blocks which pair correctly by chance stick together, while incorrect pairs fail to stick. With appropriate rules, certain structures can catalyze the formation of equivalent structures out of the random blocks. Thus correct structures that initially appear by chance will duplicate exponentially in a positive feedback loop.

A key requirement for this engineering approach (and indeed for living cells) is good error control. Living organisms, for example, utilize clever chemical and kinetic techniques for minimizing errors in their copying processes. Incorrectly incorporated blocks in the MIT setup are excised using a clever set of error detection and correction rules. The total rule set is surprisingly small, making this work a nice demonstration of self-replication in the face of environmental randomness. This work paves the way in principle for smart materials which can self assemble into structures of interest, with minimal assistance on the part of humans.

by Joe Levine, Copyright 2005 PhysOrg.com

Explore further: The stapes of a neanderthal child points to the anatomical differences with our species

Related Stories

Preparing Boston for the "big one"

Mar 25, 2015

In 1755, a major earthquake shook the Boston area, toppling chimneys and inspiring sermons and poems about the wrath of God, such as "Earthquakes the Works of God and Tokens of his Just Displeasure" and "The ...

Explainer: What are fundamental particles?

Mar 20, 2015

It is often claimed that the Ancient Greeks were the first to identify objects that have no size, yet are able to build up the world around us through their interactions. And as we are able to observe th ...

Supercomputers help solve puzzle-like bond for biofuels

Mar 16, 2015

One of life's strongest bonds has been discovered by a science team researching biofuels with the help of supercomputers. Their find could boost efforts to develop catalysts for biofuel production from non-food ...

Recommended for you

Do government technology investments pay off?

5 hours ago

Studies confirm that IT investments in companies improve productivity and efficiency. University of Michigan professor M.S. Krishnan wondered if the same was true for government.

Study finds assisted housing works, but it could be improved

5 hours ago

Two researchers from the University of Kansas Department of Urban Planning have just completed a study on the locations of assisted housing units and assisted households across the nation. It examines one of the key issues ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.