Machines making other machines: new twist on self-replication

Oct 03, 2005 feature

How can we best build self-replicating machines? The past few decades have witnessed self-replicating virtual automata, ranging from the benign Game of Life by Conway to malicious computer viruses. Self-replicating physical constructs are, however, currently both delicate and rare. The work of mathematicians such as John von Neumann and Roger Penrose, around the birth of automata theory in the middle of the past century, revealed no limits in principle to constructing such devices. The main obstacles appear to be the substantial engineering challenges.

Engineers at the Massachusetts Institute of Technology recently tackled a key challenge: how can a machine replicate properly if its components appear at random? Living cells face a similar problem when duplicating their DNA from randomly diffusing chemical components. To address this issue, the group fabricated a simple self replicating machine that dealt robustly with randomly available input components.

The MIT design consists small robotic blocks which link to one another using actuated hooks. A specific ordered linkage of blocks makes up a correctly formed device. A large number of individual blocks sit on a low-friction air-table, which shakes to move them about randomly. Each block carries both sensors to identify blocks around it and a program specifying which blocks to attach to and which to ignore. Blocks which pair correctly by chance stick together, while incorrect pairs fail to stick. With appropriate rules, certain structures can catalyze the formation of equivalent structures out of the random blocks. Thus correct structures that initially appear by chance will duplicate exponentially in a positive feedback loop.

A key requirement for this engineering approach (and indeed for living cells) is good error control. Living organisms, for example, utilize clever chemical and kinetic techniques for minimizing errors in their copying processes. Incorrectly incorporated blocks in the MIT setup are excised using a clever set of error detection and correction rules. The total rule set is surprisingly small, making this work a nice demonstration of self-replication in the face of environmental randomness. This work paves the way in principle for smart materials which can self assemble into structures of interest, with minimal assistance on the part of humans.

by Joe Levine, Copyright 2005

Explore further: Local education politics 'far from dead'

add to favorites email to friend print save as pdf

Related Stories

Designing exascale computers

Jul 23, 2014

"Imagine a heart surgeon operating to repair a blocked coronary artery. Someday soon, the surgeon might run a detailed computer simulation of blood flowing through the patient's arteries, showing how millions ...

Vertical farms offer a bright future for hungry cities

Jul 21, 2014

The 21st century has seen rapid urbanisation and the global population is now expected to grow to more than 8.3 billion by 2050. Currently, 800m hectares – 38% of the earth's land surface – is farmed ...

Recommended for you

Local education politics 'far from dead'

13 hours ago

Teach for America, known for recruiting teachers, is also setting its sights on capturing school board seats across the nation. Surprisingly, however, political candidates from the program aren't just pushing ...

First grade reading suffers in segregated schools

13 hours ago

A groundbreaking study from the Frank Porter Graham Child Development Institute (FPG) has found that African-American students in first grade experience smaller gains in reading when they attend segregated schools—but the ...

Violent aftermath for the warriors at Alken Enge

13 hours ago

Denmark attracted international attention in 2012 when archaeological excavations revealed the bones of an entire army, whose warriors had been thrown into the bogs near the Alken Enge wetlands in East Jutland ...

Why aren't consumers buying remanufactured products?

15 hours ago

Firms looking to increase market share of remanufactured consumer products will have to overcome a big barrier to do so, according to a recent study from the Penn State Smeal College of Business. Findings from faculty members ...

Expecting to teach enhances learning, recall

15 hours ago

People learn better and recall more when given the impression that they will soon have to teach newly acquired material to someone else, suggests new research from Washington University in St. Louis.

User comments : 0