Machines making other machines: new twist on self-replication

Oct 03, 2005 feature

How can we best build self-replicating machines? The past few decades have witnessed self-replicating virtual automata, ranging from the benign Game of Life by Conway to malicious computer viruses. Self-replicating physical constructs are, however, currently both delicate and rare. The work of mathematicians such as John von Neumann and Roger Penrose, around the birth of automata theory in the middle of the past century, revealed no limits in principle to constructing such devices. The main obstacles appear to be the substantial engineering challenges.

Engineers at the Massachusetts Institute of Technology recently tackled a key challenge: how can a machine replicate properly if its components appear at random? Living cells face a similar problem when duplicating their DNA from randomly diffusing chemical components. To address this issue, the group fabricated a simple self replicating machine that dealt robustly with randomly available input components.

The MIT design consists small robotic blocks which link to one another using actuated hooks. A specific ordered linkage of blocks makes up a correctly formed device. A large number of individual blocks sit on a low-friction air-table, which shakes to move them about randomly. Each block carries both sensors to identify blocks around it and a program specifying which blocks to attach to and which to ignore. Blocks which pair correctly by chance stick together, while incorrect pairs fail to stick. With appropriate rules, certain structures can catalyze the formation of equivalent structures out of the random blocks. Thus correct structures that initially appear by chance will duplicate exponentially in a positive feedback loop.

A key requirement for this engineering approach (and indeed for living cells) is good error control. Living organisms, for example, utilize clever chemical and kinetic techniques for minimizing errors in their copying processes. Incorrectly incorporated blocks in the MIT setup are excised using a clever set of error detection and correction rules. The total rule set is surprisingly small, making this work a nice demonstration of self-replication in the face of environmental randomness. This work paves the way in principle for smart materials which can self assemble into structures of interest, with minimal assistance on the part of humans.

by Joe Levine, Copyright 2005 PhysOrg.com

Explore further: Report: Dangerous lab fires show lack of training

add to favorites email to friend print save as pdf

Related Stories

Cell division, minus the cells

3 hours ago

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

Nanoparticles get a magnetic handle

Oct 09, 2014

A long-sought goal of creating particles that can emit a colorful fluorescent glow in a biological environment, and that could be precisely manipulated into position within living cells, has been achieved ...

Designing future cities

Oct 08, 2014

A hundred years ago, one out of every five people lived in urban areas. By 2050, that number will balloon to over four out of five.

Making sure antibiotics work as they should

Oct 08, 2014

Researchers at ETH Zurich are decoding the structure of the large ribosomal subunit of the mitochondria at an atomic level, thereby providing insight into the molecular architecture of this ribosome with ...

Recommended for you

Genes play a key part in the recipe for a happy country

2 hours ago

Why are the Danes naturally more cheerful than the Brits, and why are we in turn more upbeat than the French? Research presented as part of this year's ESRC Festival of Social Sciences shows us that the recipe behind a happy ...

The economics of age gaps and marriage

4 hours ago

Men and women who are married to spouses of similar ages are smarter, more successful and more attractive compared to couples with larger age gaps, according to a paper from CU Denver Economics Assistant Professor Hani Mansour ...

Prophet's ancient seal provides insights from antiquity

4 hours ago

When a personal artifact of a religious leader is discovered nearly 1,700 years after its use, the object provides invaluable historical insights. Zsuzsanna Gulacsi, professor of Comparative Cultural Studies, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.