Unusual meteorite unlocks treasure trove of solar system secrets

Sep 27, 2005

An unusual meteorite that fell on a frozen lake in Canada five years ago has led a Florida State University geochemist to a breakthrough in understanding the origin of the chemical elements that make up our solar system.

Professor Munir Humayun of the National High Magnetic Field Laboratory and the geological sciences department at FSU and Alan Brandon of NASA discovered an isotopic anomaly in the rare element osmium in primitive meteorites. The anomalous osmium was derived from small stars with a higher neutron density than that which formed our solar system. The findings of the researchers, who also included colleagues from the University of Maryland and Bern University in Switzerland, were recently published in the journal Science.

"Our new data enabled us to catch a glimpse of the different star types that contributed elements to the solar system, the parental stars of our chemical matter," Humayun said. "It opens a treasure trove of prospects for exploring the formation of the elements."

For about 50 years, scientists have known that all the elements beyond iron in the periodic table were made in stars by up to three nuclear processes. Osmium is mainly formed by two of those processes, the so-called s-process in which neutrons are slowly added to nuclei over a period of perhaps thousands of years in aging, medium-size stars and the r-process that occurs in supernovae in which neutrons are pumped into nuclei at a rate of hundreds of neutrons in a few seconds.

The new data gathered by Humayun's team not only shows the different star types that contribute elements to the solar system, it also will be used to test astrophysical models of production of the chemical elements at a more sophisticated level than previously possible, he said.

Humayun and colleagues studied samples from an extremely fragile meteorite that fell on Tagish Lake on Jan. 18, 2000. Unlike iron meteorites, primitive meteorites like this one are not preserved long on the Earth's surface because they disintegrate and form mud when exposed to water. This one was retrieved within 48 hours of its fall in the dead of an Arctic winter.

Most meteorites have a uniform osmium isotopic distribution, but Humayun's team found that osmium extracted from the Tagish Lake meteorite was deficient in s-process osmium. They are the first to report an anomaly in the isotopic makeup of the element osmium from meteorites.

Other researchers have found isotope anomalies in several other elements in some primitive meteorites, but not in others. Because of the disparity, scientists believed that the ashes of stars that preceded the solar system must have been sprinkled in a non-uniform way into the solar nebula, the disk of gas and dust that formed the sun, planets and meteorites. Scientists had hypothesized that some of the dust could have been created by an active nearby star.

Humayun's findings challenge that explanation. He believes that the anomaly is an expression of presolar stardust that survived the homogenization that affected nearly all other meteorites. Typically, stardust accretes to form meteorites and is then heated by radioactivity - a process that destroys the silicon carbide grains that are the carriers of the anomaly. But in the case of the meteorites with osmium isotopic anomalies, the heat was not significant enough to destroy the silicon carbide.

"The previous interpretation of incomplete mixing of different sources of dust at the scale of the solar nebula no longer seems tenable," he said. "We now interpret those anomalies as incomplete dissolution of silicon carbide grains that carried traces of molybdenum, ruthenium and osmium. These anomalies reveal that the raw materials from which our solar system was built are preserved in a few exceptional meteorites, from which we can now recover the prehistory of our solar system."

Source: Florida State University

Explore further: SDO captures images of two mid-level flares

add to favorites email to friend print save as pdf

Related Stories

CODITA: measuring the cosmic dust swept up by the Earth

Mar 30, 2012

Although we think of space as being empty, there is more out there than meets the eye – dust, for example, is everywhere. If all the material between the Sun and Jupiter were compressed together it would ...

Half-baked asteroids have Earth-like crust

Jan 07, 2009

Asteroids are hunks of rock that orbit in the outer reaches of space, and scientists have generally assumed that their small size limited the types of rock that could form in their crusts. But two newly discovered ...

Recommended for you

SDO captures images of two mid-level flares

Dec 19, 2014

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

Dec 19, 2014

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.