Nano World: Breath test for breast cancer

Apr 21, 2006

Breath tests for breast cancer might arise via pockets only square nanometers or billionths of a meter in size, experts told UPI's Nano World.

"If this is successful, this could lead to a quick, non-invasive and inexpensive test that could be widely dispersed over the counter to bring breast cancer screening even to people who don't have expensive health plans," said researcher Joerg Lahann, a chemist and materials scientist at the University of Michigan at Ann Arbor.

Past research found molecules generated by breast cancer can be found in breath and urine. Lahann and his colleagues are developing surfaces placed over electrodes that could in theory detect these compounds, known as metabolites.

The surfaces are only a single molecule deep. These molecules normally stand up straight in rows much like a bed of nails. When straight, the pockets between these molecules attract the metabolites. When a voltage is applied, the straight molecules bend, blocking access to the pockets and ejecting their contents.

The pockets would attract a variety of molecules toward them, not just the metabolites, Lahann said. In order to specifically attract metabolites, the plan is to switch the voltage on and off, varying the voltage each time.

"The hope is that by doing, say, 15 different measurements, you can find that no two different kinds of molecules have the same pattern on slightly differing surfaces. You would have a fingerprint," he explained. "We hope to switch fast enough, say 10, 15, maybe 20 times, to perform all the analyses you'd need with just one inhalation."

Detecting breast cancer often "is either invasive, requiring biopsies, or you requires X-ray or other expensive equipment," Lahann said. "Many therapies we have now are really good -- you just have to catch breast cancer early on."

The scientists may also have to rely on several different kinds of switchable surfaces in a device, Lahann noted. "It's too early in the research to be sure right now," he said.

Lahann and his colleagues have received a three-year U.S. Department of Defense grant for their research. "If the basic concept turns out to be feasible, we hope we can move toward a commercializable stage five to 10 years after that," Lahann said.

"It's a really novel concept, using these switchable surfaces for cancer detection. It has a lot of great potential," said chemical engineer Robert Langer of the Massachusetts Institute of Technology in Cambridge.

Copyright 2006 by United Press International

Explore further: Thinnest feasible nano-membrane produced

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Thinnest feasible nano-membrane produced

1 hour ago

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

3 hours ago

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

User comments : 0

More news stories

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Is Parkinson's an autoimmune disease?

The cause of neuronal death in Parkinson's disease is still unknown, but a new study proposes that neurons may be mistaken for foreign invaders and killed by the person's own immune system, similar to the ...