DNA to go: Texas A&M chemical engineer aims for DNA lab-on-a-chip

Apr 21, 2006
DNA to go: Texas A&M chemical engineer aims for DNA lab-on-a-chip

When Dr. Victor Ugaz talks about "catch-and-release," he means DNA, not fish. DNA is known to most of us these days through crime shows, but crime scene investigators and police detectives aren't the only ones who use DNA analysis. DNA identification is also used to diagnose diseases or detect biological agents and toxins. Ugaz, an assistant professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University, is working to miniaturize a sprawling DNA lab so that components needed for DNA analysis are available in a tiny lab-on-a-chip about the size of a business card.

He's already worked out a novel scheme to perform the series of reactions that allow scientists to rapidly copy the often trace amounts of DNA for analysis. Now, in a paper in the March 28 issue of the Proceedings of the National Academy of Sciences (Vol. 103 No. 13, 4825-4830), Ugaz and Ph.D. student Faisal A. Shaikh have retreated a step: isolating and concentrating small amounts of DNA that would otherwise be difficult to analyze.

"We've found a way to take a dilute DNA sample and concentrate it," Ugaz said. "A lot of times, the genomic material you're looking for is in your sample but at very low concentrations. Using our device, DNA can be concentrated to a much higher level so we can detect it more easily."

In the paper, "Collection, focusing and metering of DNA in microchannels using addressable electrode arrays for portable low-power bioanalysis," Ugaz and Shaikh present their scheme for concentrating and focusing a minute sample of DNA in tiny spaces called microchannels.

The scheme involves placing a series of small electrodes at set intervals along the bottom of a microchannel. A DNA sample is injected into the channel and a small voltage (1 Volt) is applied across the first pair of electrodes in the series. Because opposites attract, the negatively charged DNA migrates toward the positively charged anode and accumulates there, making it possible to "catch" the DNA sample. Switching off the voltage and reapplying it between the second and third electrodes will then "release" the DNA allowing it to be collected at the third electrode.

By repeating this sequential catch and release process, the DNA concentration can be progressively increased. Labeling the sample with a fluorescent dye allows the stepwise increase in concentration from electrode to electrode to be directly observed. After enough catch-and-release steps have been performed to raise the concentration to a desired level, the collected DNA can then be dispensed and used to perform a variety of analysis tests.

And all on a device the size of a business card.

"We're working on developing the components needed to build miniaturized lab-on-a-chip devices" Ugaz said. "The simplicity of this design makes it attractive for portable and inexpensive analysis systems that could be used in areas where there's no access to large DNA labs."

Source: Texas A&M University

Explore further: Researchers create methylation maps of Neanderthals and Denisovans, compare them to modern humans

add to favorites email to friend print save as pdf

Related Stories

Creative activities outside work can improve job performance

3 hours ago

Employees who pursue creative activities outside of work may find that these activities boost their performance on the job, according to a new study by San Francisco State University organizational psychologist Kevin Eschleman ...

Simplicity is key to co-operative robots

4 hours ago

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

Freight train industry to miss safety deadline

5 hours ago

The U.S. freight railroad industry says only one-fifth of its track will be equipped with mandatory safety technology to prevent most collisions and derailments by the deadline set by Congress.

Recommended for you

Study finds law dramatically curbing need for speed

7 hours ago

Almost seven years have passed since Ontario's street-racing legislation hit the books and, according to one Western researcher, it has succeeded in putting the brakes on the number of convictions and, more importantly, injuries ...

Newlyweds, be careful what you wish for

Apr 17, 2014

A statistical analysis of the gift "fulfillments" at several hundred online wedding gift registries suggests that wedding guests are caught between a rock and a hard place when it comes to buying an appropriate gift for the ...

User comments : 0

More news stories

Study finds law dramatically curbing need for speed

Almost seven years have passed since Ontario's street-racing legislation hit the books and, according to one Western researcher, it has succeeded in putting the brakes on the number of convictions and, more importantly, injuries ...

LinkedIn membership hits 300 million

The career-focused social network LinkedIn announced Friday it has 300 million members, with more than half the total outside the United States.

Magnitude-7.2 earthquake shakes Mexican capital

A powerful magnitude-7.2 earthquake shook central and southern Mexico on Friday, sending panicked people into the streets. Some walls cracked and fell, but there were no reports of major damage or casualties.

Sun emits a mid-level solar flare

The sun emitted a mid-level solar flare, peaking at 9:03 a.m. EDT on April 18, 2014, and NASA's Solar Dynamics Observatory captured images of the event. Solar flares are powerful bursts of radiation. Harmful ...