The logic of life

Apr 20, 2006

Even though the entire human genome has now been 'read' - the chemical composition of our DNA has been more or less mapped out, gene by gene - we still have a rather poor grasp of how living cells actually work. That's because the genome is not really a 'book of life', but is just a catalogue of the parts of the cellular machinery, rather like a list of all the electronic components in a complicated computer circuit. The key challenge for biologists in the twenty-firstt century is to figure out how those component genes are wired together. To do that, they may need help from physicists, electronic and computer scientists, and others.

On Thursday 20 April at the Condensed Matter and Materials Physics conference, organized by the Institute of Physics at the University of Exeter, Pieter Rein ten Wolde of the Institute for Atomic and Molecular Physics (AMOLF) in Amsterdam will explain how, by tracing some of the key patterns in this gene wiring, one can start to understand how 'gene logic' works. This is the first step in compiling an instruction manual that shows how the cell's components are connected up.

One of the central discoveries in this field, now called 'systems biology' was made as far back as the 1960s, when it was found that genes can 'regulate' each other, controlling the rate at which a gene is converted to its corresponding protein molecule or even switching one another 'on' or 'off' entirely. These networks of interacting genes are called gene regulatory networks and they lie at the heart of how cells work.

The functioning of gene networks looks a lot like the way components in electrical circuits might control one another. Two genes are considered to be 'wired together' if one of them influences the activity (the rate of protein production, say) of the other. In this way, genes can be connected to act as switches or amplifiers in biochemical processes. This is why many researchers in systems biology are starting to talk about the genetic circuitry of cells using terms and concepts borrowed from electronic and computer sciences, and even to talk of cells as though they perform kinds of computation, receiving signals which they process to generate particular kinds of 'output' responses.

Ten Wolde asks whether these networks display characteristic patterns that might provide clues to how they work, or whether in contrast the wiring pattern just looks random. He has found, for instance, that genes in E. coli bacteria that regulate one another seem to be clustered closer together on the bacterial DNA than would be expected if they were just positioned at random. Sometimes, in fact, these regulatory segments on DNA actually overlap, like bits of text that run into one another. Such overlap can help to synchronize the activity of the genes - enabling one to be switched 'on' only while the other is switched 'off', say. This sort of correlated behaviour can make the gene regulatory networks less easily disrupted by random 'noise' in the biochemical system, so that they operate more effectively than if the genes were spaced randomly. Ten Wolde thinks that these improvements could provide an evolutionary selective pressure that makes the genes drift together on the genome.

Ten Wolde has also found how gene regulatory networks can do geometry. He has shown how interacting genes in a developing fruitfly embryo can locate the precise midpoint of the oval-shaped embryo, so that a protein is produced in one half of the organism but not the other. This provides a mechanism for dividing up the embryo so that the collection of initially identical cells generate compartments that follow different developmental pathways, becoming different body parts of the fly.

Source: Institute of Physics

Explore further: New filter could advance terahertz data transmission

add to favorites email to friend print save as pdf

Related Stories

Google-style ranking used to describe gene connectivity

Feb 13, 2015

Using the technique known as "Gene Rank" (GR), Dartmouth's Norris Cotton Cancer Center investigator Eugene Demidenko, PhD, captured and described a new characterization of gene connectivity in "Microarray ...

Recommended for you

New filter could advance terahertz data transmission

22 hours ago

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

23 hours ago

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.