Scientists reveal how a novel ceramic achieves directional conduction

Apr 19, 2006

An international team led by University College London scientists at the London Centre for Nanotechnology has unravelled the properties of a novel ceramic material that could help pave the way for new designs of electronic devices and applications.

Working with researchers from the Swiss Federal Institute of Technology (ETH), Zurich, the University of Tokyo and Lucent Technologies, USA, they reveal in a Letter to Nature that the complex material, which is an oxide of manganese, functions as a self-assembled or 'natural' layered integrated circuit. By conducting electricity only in certain directions, it opens up the possibility of constructing thin metal layers, or racetracks, insulated from other layers only a few atoms away.

Currently, the race for increasingly small and more powerful devices has relied on two-dimensional integrated circuits, where functional elements such as transistors are engineered via planar patterning of the electrical properties of a semiconductor. Packing more functionalities into tiny electronic devices has until now been achieved by reducing the lateral size of each component, but a new realm of opportunity opens with the ability of building three-dimensional structures.

Professor Gabriel Aeppli, Director of the London Centre for Nanotechnology and co-author of the study, explains: "There is an issue of how you deal with leakage between layers when you pack circuits into three dimensions. Our work with the Tokyo-Lucent groups shows that you can have many layers with little or no leakage between them. This is because we're not dealing with ordinary electrons, but with larger objects, consisting of electrons bound to magnetic and other disturbances of the atomic fabric of the material, which can't travel across the barriers between layers."

The flow of electricity in modern electronic devices relies on the fact that electrons move readily in certain solids, such as metals like copper, and are blocked from moving in insulators such as quartz. In ordinary solids, electrons move similarly in all three dimensions, therefore if a material is metallic along one direction, it will be metallic in all directions. The ceramic – a manganese oxide alloy with the chemical formula La1.6Sr1.4Mn2O7 – has fascinated scientists for a decade due to the extraordinary sensitivity of its electrical properties to magnets placed near it. Most interesting was the discovery by the University of Tokyo group that even quite small magnets can switch electrical currents in the same way in this ceramic as in much more expensive, individually fabricated electronic devices of the type being tested for advanced magnetic data storage.

Using one of the classic tools of nanotechnology, the scanning tunnelling microscope, Dr Henrik Rønnow (ETH) and Dr Christoph Renner (LCN and UCL) swept a tiny metallic tip with sub-atomic accuracy over the surface of the ceramic to sense its topographic and electronic properties at spatial resolution of less than the diameter of a single atom. The data showed that this ceramic behaves like a perfect metal along the planes parallel to the surface and like an insulator along the direction perpendicular to the surface.

The results also revealed the first snap-shot of a possible culprit for this unusual electronic behaviour. In conventional solids, charge is carried by simple electrons, but in such ceramics, it is shuttled around by more complex objects, known as polarons, which consist of electrons bound to a magnetic disturbance as well as local displacements of atoms away from their ordinary positions.

Source: University College London

Explore further: Researchers discover low-grade nonwoven cotton picks up 50 times own weight of oil

add to favorites email to friend print save as pdf

Related Stories

New tool, savings for manufacturing hard materials

Jul 17, 2014

"Machining," in particular the process of cutting hard, brittle materials during manufacturing, can be difficult, often because the cutting tool, typically made of single crystal diamond, the hardest material ...

ATV's fiery break-up to be seen from inside

Jul 17, 2014

As ESA's remaining supply ferry to the International Space Station burns up in the atmosphere, its final moments as its hull disintegrates will be recorded from the inside by a unique infrared camera.

Physicists' findings improve advanced material

Jun 27, 2014

A new technique developed by a Binghamton University physicist and his colleagues will improve the quality of flexible, conductive, transparent glass. (The sort that's needed for Minority Report-style giant ...

LEDs: Better red makes brighter white

Jun 23, 2014

Chemists at Ludwig-Maximilians-Universitaet (LMU) in Munich have developed a novel type of red phosphor material, which significantly enhances the performance of white-emitting LEDs.

Funky ferroelectric properties probed with X-rays

Jun 10, 2014

Ferroelectric materials like barium titanate, a ceramic used in capacitors, are essential to many electronic devices. Typical ferroelectric materials develop features called domain walls with unusual properties ...

Recommended for you

Refocusing research into high-temperature superconductors

10 hours ago

Below a specific transition temperature superconductors transmit electrical current nearly loss-free. For the best of the so-called high-temperature superconductors, this temperature lies around -180 °C – a temperature ...

MRI for a quantum simulation

15 hours ago

Magnetic resonance imaging (MRI), which is the medical application of nuclear magnetic resonance spectroscopy, is a powerful diagnostic tool. MRI works by resonantly exciting hydrogen atoms and measuring ...

50-foot-wide Muon g-2 electromagnet installed at Fermilab

15 hours ago

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, ...

User comments : 0