Nano World: Nano-drugs cure mouse prostate

Apr 11, 2006

A single injection of nanoparticles loaded with drugs completely eliminated prostate tumors in mice, experts told UPI's Nano World.

Annually some 230,000 people get prostate cancer, killing 30,000 a year, explained researcher Omid Farokhzad, a molecular biologist and anesthesiologist at Brigham and Women's Hospital in Boston. The current state-of-the-art therapies for prostate cancer either implant radioactive material in the cancer to kill off cells or remove the entire diseased prostate gland. The radioactive therapy can prove effective but can lead to erectile dysfunction, urinary retention and radiation-induced bowel injury.

"A non-radioactive system such as our system could prove more efficient and less toxic than the current state of the art therapies, and much less toxic than traditional drugs, which can lead to many chemotherapy-associated complications," Farokhzad said.

The nanoparticles consisted of the anticancer drug docetaxel encapsulated within a safe, biodegradable polymer, to release the drug continually over time after the tumor absorbs the nanoparticles. The polymer is also effective against immediate removal from the body by the immune system, to help ensure the nanoparticles reached their intended target and do not inadvertently get absorbed by other cells beforehand.

The nanoparticles in turn were coated with RNA sequences known as aptamers, which can bind to specific cell surface receptors. In this case, the sequences targeted the prostate specific membrane antigen, a molecule that populate the surfaces of prostate cancer cells that is well known to get absorbed into the cell interior as well.

In mice, a single injection of the nanoparticles directly into prostate tumors resulted in complete tumor reduction in five of seven mice, with 100 percent surviving the entire 109-day study period. In contrast, nanoparticles without the RNA sequences resulted in complete tumor reduction in only two of seven mice and saw a 57 percent survival rate, while docetaxel treatment alone only had 14 percent survivability.

The Food and Drug Administration had approved the drug and polymers used in the nanoparticle therapy for prior clinical use, and the RNA aptamers are easy to synthesize and are not known to trigger immune responses, factors which the researchers hope could help quickly bring their nanoparticles for treatment in people.

"The route to FDA approval is a little easier if a new device or drug is based on materials that are already in use for other applications," said mechanical engineer David LaVan at Yale University in New Haven, Conn. "This does not mean that they can be used automatically, just that the approval path is shorter. It is good to see, as it is common for people to develop new materials like this with little awareness of what has been approved or not in the past."

Researcher Robert Langer, a chemical engineer chemical engineer at the Massachusetts Institute of Technology, added, "this technology could be applied to almost any disease" by re-engineering the nanoparticles' properties to make them target other cells and diseases. "The work could have widespread applications beyond prostate cancer through the use of specific aptamer-antigen combinations for other types of cancer," said biomedical engineer Jason Burdick University of Pennsylvania in Philadelphia.

Langer, Farokhzad and their colleagues reported their findings online Monday via the Proceedings of the National Academy of Sciences.

Copyright 2006 by United Press International

Explore further: Thinnest feasible nano-membrane produced

add to favorites email to friend print save as pdf

Related Stories

Physicists create new nanoparticle for cancer therapy

26 minutes ago

A University of Texas at Arlington physicist working to create a luminescent nanoparticle to use in security-related radiation detection may have instead happened upon an advance in photodynamic cancer therapy.

Patent approved for cancer-fighting process

Feb 13, 2014

A new process developed at the University of Victoria that will help oncologists better identify and target cancerous tumours has been granted a US patent. The patented technology involves synthesizing lanthanide (rare earth ...

Recommended for you

Thinnest feasible nano-membrane produced

14 hours ago

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

17 hours ago

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

User comments : 0

More news stories

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Six Nepalese dead, six missing in Everest avalanche

At least six Nepalese climbing guides have been killed and six others are missing after an avalanche struck Mount Everest early Friday in one of the deadliest accidents on the world's highest peak, officials ...

White House updating online privacy policy

A new Obama administration privacy policy out Friday explains how the government will gather the user data of online visitors to WhiteHouse.gov, mobile apps and social media sites. It also clarifies that ...