Researchers use nanodots to boost superconductivity

Apr 04, 2006

Oak Ridge National Laboratory researchers have demonstrated a way to sustain high supercurrents in wires in the presence of a large applied magnetic field -- a step which could greatly expand practical applications of superconductors.

By creating columns of self-aligned, non-superconductive "nanodots" within the superconductor, the ORNL team has produced a high-temperature superconductor that works even in a powerful magnetic field.

The ORNL work, reported in the current issue of Science, increases the plausibility of high-temperature superconductors in motors, generators, air defense systems and other applications once limited by the negative effects of applied magnetic fields.

Lead author for the Science paper is Sukill Kang, a post-doctoral fellow in the Materials Sciences and Technology Division at ORNL.

Kang's mentor, Amit Goyal, is an ORNL distinguished scientist and the project's technical leader who also co-developed the rolling-assisted-biaxially-textured substrates (RABiTS) process which deposits brittle, ceramic-like high temperature superconducting materials onto a substrate, or template, that gives the wires the texture, flexibility and mechanical strength of metal.

Superconductors carry large amounts of current when cooled, offering much more efficient energy transmission for a wide range of uses. Advances in achieving supercurrent at higher temperatures with liquid nitrogen, which is more practical than liquid helium needed to cool older superconductors at lower temperatures, have made the technology more applicable.

However, magnetic fields have remained an obstacle to many superconductor applications, Goyal said. The problem is that naturally occurring vortices -- whirling cylindrical forces between the atoms of the superconducting material -- begin to move about under applied magnetic fields, creating electrical resistance and power dissipation. Large scale supercurrents can flow only if these vortices remain firmly locked in place, or "pinned."

ORNL's answer was to incorporate "misfit" nanodots of non-conductive material throughout the entire thickness of the superconductor and effectively pin the vortices and prevent their movement, enabling high supercurrents even in the presence of high applied magnetic fields.

"Most applications of superconductors require the superconductor to be in large applied magnetic fields," Goyal said. "Thus, to truly sustain very high current in strong magnetic fields, you must prevent the vortices from moving.

"One way to do that is to have non-superconducting regions which "pin" or prevent these vortices from moving. They provide a barrier. To get adequate, effective, non-superconducting regions to do this work for us, they had to be of the nanoscale dimensions.

"This is a nice combination of the use of nanotechnology and superconductivity. With continued advances in nanotechnology, maybe even more interesting things are possible in the future.

Bob Hawsey, manager of ORNL's superconductivity program, said the work, sponsored by the Department of Energy's Office of Electricity Delivery and Energy Reliability, may lead to even more developments in superconductivity.

"These results demonstrate the potential for the 'second generation' high-temperature superconductors to have broad applicability in the electric power sector of our economy" Hawsey said. "Our team is working with three U.S. companies to learn how to apply these innovative, short-sample laboratory results to industrial processes."

Source: Oak Ridge National Laboratory

Explore further: Materials for the next generation of electronics and photovoltaics

add to favorites email to friend print save as pdf

Related Stories

Unstoppable magnetoresistance

Oct 09, 2014

Mazhar Ali, a fifth-year graduate student in the laboratory of Bob Cava, the Russell Wellman Moore Professor of Chemistry at Princeton University, has spent his academic career discovering new superconductors, ...

Europe's new age of metals begins

Sep 11, 2014

ESA has joined forces with other leading research institutions and more than 180 European companies in a billion-euro effort developing new types of metals and manufacturing techniques for this century.

Ultracold atoms juggle spins with exceptional symmetry

Sep 03, 2014

The physical behavior of materials is strongly governed by the many electrons which can interact and move inside any solid. While an individual electron is a very simple object, carrying only mass, electric ...

Recommended for you

Energy storage of the future

Oct 20, 2014

Personal electronics such as cell phones and laptops could get a boost from some of the lightest materials in the world.

User comments : 0