Scientists discover new way to look at how molecules twist and turn on water

Sep 08, 2005
Scientists discover new way to look at how molecules twist and turn on water

Chemists have discovered details about how the tadpole-shaped molecules found in many soaps and detergents bury their heads into the top-most surface of water, an insight expected to yield benefits such as better methods for cleaning up environmental hazards. The findings of a team led by University of Oregon chemist Geri Richmond are featured on the cover of the Sept. 8 issue of the Journal of Physical Chemistry B.

Image: Illustration by Dennis Hore, Richmond Lab, University of Oregon

"We have developed a method to determine the tilt and twist angles of these molecules at the surface, a characterization that is important for understanding how they might function in various practical applications," Richmond said. "This is a general approach that has broad implications for a variety of chemically and biologically important applications."

"With the head groups of these molecules happy to be surrounded by water molecules at the water surface and their tails preferring to stick up out of the water, extending into the air or an adjacent oily layer in the case of an oil slick," Richmond explained, "such molecules known as surfactants are some of the most pervasive and useful chemicals in the world, found in products ranging from motor oil to cosmetics. They are also key ingredients for environmental clean-up and oil recovery."

The work by Richmond, Dennis Hore, Daniel Beaman and Daniel Parks provides a picture of how these surfactant molecules orient at an aqueous surface. Theirs are the first studies to determine the detailed orientation of simple soap head groups at the water surface, using a unique combination of laser-based experiments and computer modeling. These studies add important new insights into ongoing studies in the Richmond laboratory that seek to understand how these surfactant head groups change the properties of water at aqueous surfaces.

Source: University of Oregon

Explore further: 'Comb on a chip' powers new atomic clock design

add to favorites email to friend print save as pdf

Related Stories

Google made failed bid for Spotify

3 hours ago

Internet titan Google tried last year to buy streaming music service Spotify but backed off for reasons including a whopping price tag, the Wall Street Journal reported on Tuesday.

Thieves got into 1K StubHub accounts

3 hours ago

(AP)—Cyber thieves got into more than 1,000 StubHub customers' accounts and fraudulently bought tickets for events through the online ticket reseller, a law enforcement official and the company said Tuesday.

Microsoft CEO sees 'bold' plan as 4Q tops Street

4 hours ago

(AP)—Microsoft Corp. CEO Satya Nadella painted an upbeat vision of the future Tuesday, saying that the next version of Windows will be unified across screens of all sizes and that two money-losing units—Nokia ...

Recommended for you

IHEP in China has ambitions for Higgs factory

13 hours ago

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

The physics of lead guitar playing

14 hours ago

String bends, tapping, vibrato and whammy bars are all techniques that add to the distinctiveness of a lead guitarist's sound, whether it's Clapton, Hendrix, or BB King.

The birth of topological spintronics

15 hours ago

The discovery of a new material combination that could lead to a more efficient approach to computer memory and logic will be described in the journal Nature on July 24, 2014. The research, led by Penn S ...

The electric slide dance of DNA knots

18 hours ago

DNA has the nasty habit of getting tangled and forming knots. Scientists study these knots to understand their function and learn how to disentangle them (e.g. useful for gene sequencing techniques). Cristian ...

User comments : 0