New String-Theory Notion Redefines the Big Bang

Mar 31, 2006 feature

String theory — the concept that all particles can be represented as strings or string-loops of incredibly minute length, oscillating at various frequencies — was initially developed to help explain why quarks, the tiny fundamental particles that make up protons and neutrons, are always confined within larger composite particles. However, string theory has evolved to allow scientists to deal with some wider issues. For example, they can use string theory to devise explanations for some grand problems in cosmology, such as the state of the universe — its shape, size, etc. — just after the Big Bang, when quarks roamed freely.

Along these lines, a group of theoretical physicists has recently published an interesting string-theory scenario that describes a new way to approach the development of the Big Bang. They propose that the universe began as a type of theoretical space-filling object called a “brane.”

This work was published in the January 27, 2006, online edition of Physical Review Letters.

“Perhaps the most ambitious problem in cosmology is the question of the initial conditions of the universe — what it looked like before expanding into the stars and planets we see today,” said a physicist involved in the study, Robert Leigh of the University of Illinois, to PhysOrg.com. “We propose that the universe, before expansion, was an unstable brane that decayed into innumerable string-loops to form the universe as we now know it.”

The conventional model for the expansion of the universe assumes that the universe once existed as a very small, point-like volume called a “singularity.” Then the Big Bang occurred, and the universe rapidly expanded. An extension of this, and one main competitor of the brane model, is the Big Crunch/Big Bang theory, which assumes that the universe was once vast, then “crunched” down to a singularity before expanding. The Big Bang/Big Crunch model implies that time existed before the Big Bang.

The problem with the Big Crunch/Big Bang model is that the mathematical laws of classical general relativity do not work at a singularity. And if scientists cannot mathematically understand the singularity, they cannot, in theory, fully understand the geometry of spacetime, either before the Big Crunch or after the Big Bang.

“Our brane model allows us to mathematically address what might have happened at the Big Bang, and also gives a novel interpretation of time in string theory,” said Leigh.

He and his group propose that time began when, via a Big Bang-like event, the brane decayed into closed strings (loops) that propagated off to create the ordinary matter that makes up the universe. This scenario, while avoiding the mathematical problems of a singularity, also helps explain some other issues. For example, to us, the universe looks the same in every direction. Within this brane model, the homogeneity of the universe could be explained as the result of an early universe with homogenous initial conditions, such as a brane that evenly filled space. Leigh and his colleagues may further explore this in additional studies.

Citation: “Brane Decay and an Initial Spacelike Singularity,” Phys. Rev. Lett. 96, 031301 (2006)

By Laura Mgrdichian, Copyright 2006 PhysOrg.com

Explore further: Sensitive detection method may help impede illicit nuclear trafficking

add to favorites email to friend print save as pdf

Related Stories

Our Universe: A Quantum Loop

Apr 25, 2006

“There are two classical branches of the universe connected by a quantum bridge. This connects the former collapse with the current expansion.” While Abhay Ashtekar and his colleagues, Tomasz Pawlowski and Parampreet ...

Recommended for you

CERN: World-record current in a superconductor

17 hours ago

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Taroeel
not rated yet Dec 03, 2008
Absolute Mass of Higgs Boson
1.011217 100's of Giga Electron Volt Scale.
Absolute Mass of Z Boson
.911865 100's GEV/c^2
Absolute Mass of W Boson
.803985 100's GEV/c^2
http://geocities.com/taroeel
-Prof G. Taroeel

More news stories

CERN: World-record current in a superconductor

In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two ...

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Low Vitamin D may not be a culprit in menopause symptoms

A new study from the Women's Health Initiative (WHI) shows no significant connection between vitamin D levels and menopause symptoms. The study was published online today in Menopause, the journal of The North American Menopa ...

Astronomers: 'Tilt-a-worlds' could harbor life

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...