How two liquids mix at the surface: an atomic view

Sep 01, 2005
How two liquids mix at the surface: an atomic view

Whenever cream is poured into coffee, these two liquids form a homogeneous mixture, which is difficult to separate again. Other liquids, such as water and oil, do not mix, instead forming emulsions, such as salad dressing.

Image: Schematic representation of atomic-scale demixing observed in BiSn liquid alloy.

In results reported in this week's issue of Physical Review Letters [Phys. Rev. Lett. 95, 106103 (2005)], a collaboration lead by physicists from Harvard University have used x-rays to look at how atoms of two elemental liquids - bismuth and tin - mix together. Despite forming a perfectly miscible alloy in the bulk phase, near the surface the two elements separate into alternating atomic layers.

"The surface demixing is somewhat of a paradox since it occurs due to the strongly enhanced attraction between the atoms of the two components, while for partially miscible mixtures the opposite is true: atoms or molecules are more attracted to their own kind" explains Dr. Oleg Shpyrko, the leading author of the study.

"Surface demixing was predicted in 1950 by Defay and Prigogine, but it eluded experimentalists for more than 50 years: liquids only demix within a nanometer-deep surface region, and there are very few techniques that can probe structure of liquid surfaces on such tiny length scales. As we attempt to understand properties of nanoscale materials where most atoms are near the surface, these and other interfacial effects are expected to play a dominant role."

by Oleg Shpyrko, Argonne National Laboratory
Web address: http://liquids.deas.harvard.edu/oleg/
Email: oshpyrko_AT_anl.gov
Tel: 630-252-7540

Explore further: Ultrafast imaging of complex systems in 3D at near atomic resolution nears

add to favorites email to friend print save as pdf

Related Stories

What makes Champagne bubbly?

Dec 09, 2014

(Phys.org)—Just in time for the holidays, scientists have unraveled some of the chemistry behind the diffusion of CO2 molecules in a glass of Champagne. Among their findings, they discovered that ethan ...

Researchers find way to turn sawdust into gasoline

Nov 25, 2014

Researchers at KU Leuven's Centre for Surface Chemistry and Catalysis have successfully converted sawdust into building blocks for gasoline. Using a new chemical process, they were able to convert the cellulose ...

Recommended for you

What's next for the Large Hadron Collider?

16 hours ago

The world's most powerful particle collider is waking up from a well-earned rest. After roughly two years of heavy maintenance, scientists have nearly doubled the power of the Large Hadron Collider (LHC) ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.