Field-effect transistor based on KTaO<sub>3</sub> perovskite

May 01, 2004
FET

Solid state devices based on transition metal oxides, especially with perovskite related structure, are very promising candidates for the next generation electronics due to their rich variety of functions such as superconductivity, ferroelectricity, and colossal magnetoresistance.
K. Ueno et al. from Correlated Electron Research Center (CERC) in Japan report in the last issue of Applied Physics Letters (Vol. 84, No. 19, pp. 3726–3728 ) about fabrication of an n-channel accumulation-type field-effect transistor utilizing a KTaO3 single crystal as an active element and a sputtered amorphous Al2O3 film as a gate insulator.
The device demonstrated an ON/OFF ratio of 104 and a field-effect mobility of 0.4 cm2/V s at room temperature, both of which are much better than those of the SrTiO3 FETs reported previously.

The field-effect transistor (FET) is the most fundamental device among all solid state devices based on transition metal oxides, and thus the fabrication of FETs using perovskite-related oxides for conducting channels is a first step in a large movement towards oxide electronics.
Nevertheless, only a small number of perovskite FETs with relatively low mobilities have been reported so far.

KTaO3, an n-type semiconductor with a band gap of 3.8 eV, which, in single crystalline form, exhibits a relatively higher mobility of 30 cm2/V s at room temperature than other perovskites.

The FET fabricated on the heat-treated surface of a KTaO3 single crystal showed accumulation-type behavior and reproducible n-channel transistor characteristics with a field-effect mobility more than 0.4 cm2/V s and an ON/OFF ratio greater than 104 at room temperature.
The field-effect mobility was almost temperature independent down to 200 K. These results indicate that the Al2O3/KTaO3 interface is worthy of further investigations as an alternative system of future oxide electronics.

Authors have demonstrated that KTaO3 is one of the most promising materials for perovskite FET technology. This strongly inspires future research into oxide electronics.

Explore further: Computerized emotion detector

add to favorites email to friend print save as pdf

Related Stories

Final pieces to the circadian clock puzzle found

9 hours ago

Researchers at the UNC School of Medicine have discovered how two genes – Period and Cryptochrome – keep the circadian clocks in all human cells in time and in proper rhythm with the 24-hour day, as well ...

Measuring modified protein structures

13 hours ago

Swiss researchers have developed a new approach to measure proteins with structures that change. This could enable new diagnostic tools for the early recognition of neurodegenerative diseases to be developed.

New insights in survival strategies of bacteria

13 hours ago

Bacteria are particularly ingenious when it comes to survival strategies. They often create a biofilm to protect themselves from a hostile environment, for example during treatment with antibiotics. A biofilm is a bacterial ...

Recommended for you

Computerized emotion detector

1 minute ago

Face recognition software measures various parameters in a mug shot, such as the distance between the person's eyes, the height from lip to top of their nose and various other metrics and then compares it with photos of people ...

Google to test cars without a driver

1 hour ago

Google plans to begin testing its new prototype of a self-driving car - which, unlike earlier models, doesn't require a back-up driver - at NASA's Ames Research Center, just a few miles from the tech company's ...

User comments : 0