New Look At Microwave Background May Cast Doubts On Big Bang Theory

Aug 10, 2005

A new analysis of 'cool' spots in the cosmic microwave background may cast new doubts on a key piece of evidence supporting the big bang theory of how the universe was formed.

Two scientists at The University of Alabama in Huntsville (UAH) looked for but couldn't find evidence of gravitational "lensing" where you might expect to find it, in the most distant light source in the universe - the cosmic microwave background.

Results of this research by Dr. Richard Lieu, a UAH physics professor, and Dr. Jonathan Mittaz, a UAH research associate, were published Monday in the "Astrophysical Journal."

In the same paper, Albert Einstein's 1917 theory that at a certain "critical" density the counteracting forces of gravity and expanding space can result in a "flat" universe no matter how irregular the distribution of matter might be, is proven mathematically for the first time.

Proving Einstein right might become a problem for the standard cosmological model of how the universe was formed because Einstein's theory also predicts that the cosmic microwave background shouldn't look the way it does, according to Lieu.

The problem, he says, is that cool spots in the microwave background are too uniform in size to have traveled across almost 14 billion light years from the edges of the universe to Earth.

"Einstein's theory of how gravity attracts light, coupled with the uneven distribution of matter in the near universe, says you should have a spread of sizes around the average, with some of these cool spots noticeably larger and others noticeably smaller," he said. "But this dispersion of sizes is not seen in the data. When we look at them, too many cool spots are the same size."

The cosmic microwave background is believed to be the afterglow of hot gases that filled the fledgling universe immediately following the big bang. These microwaves permeate the sky, coming to Earth from every direction in a nearly homogeneous blanket of weak radiation.

Nearly homogeneous because some spots are slightly cooler than the average "temperature" of less than three Kelvin - three degrees Celsius above absolute zero.

Cosmologists have theorized that these cool regions in the microwave blanket are the birthmarks of galaxies and clusters of galaxies that condensed out of the primordial plasma a few eons after the big bang.

Based on theories about disturbances in gases that existed for millennia after the big bang, cosmologists developed detailed estimates of how big these cool spots should have been when they emitted the radiation reaching us as microwaves today.

These cool spots were studied in detail by the Wilkinson Microwave Anisotropy Probe (WMAP), which found that the average spot is about the size that had been forecast for a flat, smooth universe.

The problem, says Lieu, is that not only is the average about right, but far too many of the spots themselves are "just right" with too little variation in sizes. Given the uneven distribution of matter in an expanding universe, he says, we should see a broader size distribution among the cool spots by the time that radiation reaches Earth.

The distribution of matter and the expanding universe are important because they have opposite effects on the "shape" of space and the paths taken by light, microwaves and other radiation as they zip through the cosmos.

An expanding universe would tend to "stretch" space, causing radiation to disperse as it flies through. That dispersion would make objects appear to an observer to be smaller than they really are, as if the light went through a concave lens.

"As far as we know," said Lieu, "the expansion takes place smoothly everywhere. When the universe reaches a certain age all points in space at this moment expand in the same way."

Matter - or more specifically gravity - tends to constrain space. And because matter is distributed unevenly across the universe, so are its gravitational effects.

If you have enough matter in one small place, such as a galaxy or cluster of galaxies, that super concentration of gravity can act like a convex lens, bending inward both space and any light traveling through it. When light from a distant galaxy is bent by gravity as it passes another galaxy or galaxy cluster, these distortions can appear as Einstein rings or weak lensing shear effects.

If the object emitting light is like a cool spot in the microwave background, the focusing effect of galaxy clusters or groups of galaxies between those spots and Earth might make the spots appear to be larger than they really were.

A large portion of the mass in the nearby universe is concentrated in small volumes of space. These are galaxies and massive galaxy clusters, which are surrounded by vast empty voids of intergalactic space.

If the standard big bang model is correct, that means the microwave radiation from some cool spots would travel through mostly empty space, would be dispersed by the expanding universe and would look small by the time that radiation reached Earth.

Radiation from other cool spots, however, would pass around or near massive gravity lenses. These focused spots would appear to be larger than the average cool spot.

"But you don't see this fluctuation," said Lieu. "There appear to be no lensing effects whatsoever. This lack of variation is a serious problem."

In his "Cosmological Considerations of the General Theory of Relativity," Einstein theorized that the net effect of the counteracting forces of expansion and gravity should remain the same if the amount of matter in the universe stays the same.

While Einstein developed this theorem based on a universe where the distribution of matter is "smooth," the UAH mathematical work shows for the first time that the net effect on the propagation of light doesn't change even if the universe is "clumpy."

If the cool spots are too uniform to have traveled to Earth from near the beginning of time, Lieu says cosmologists are left with several alternative explanations.

The first is that the cosmological parameters (including the Hubble constant, the amount of dark matter, etc.) used to predict the original, pre-lensed sizes of the cool and hot spots in the microwave background might be wrong. These parameters could be adjusted to predict a narrower range of sizes on either side of the "pre-lensed" average.

Then, after the effect of gravitational lensing is folded in, the resulting average size and size dispersion would agree with what WMAP actually saw, said Lieu. "This approach is the most conservative, but would still result in an overhaul of the standard model."

"Or, could it be that although the radiation itself is from far away, some of these cool spot structures are caused by nearby physical processes and aren't really remnants of the universe's creation?" Lieu asked. "Could they have been imprinted locally and aren't cosmological at all? Given that we find no lensing, that might be one possibility.

³Or is it possible that as light goes through the vast areas of space there is some other, unknown factor damping the effects of dispersion and focusing? There is certainly plenty of room for unknowns."

The most contentious possibility is that the background radiation itself isn't a remnant of the big bang but was created by a different process, a "local" process so close to Earth that the radiation wouldn't go near any gravitational lenses before reaching our telescopes.

Although widely accepted by astrophysicists and cosmologists as the best theory for the creation of the universe, the big bang model has come under increasingly vocal criticism from scientists concerned about inconsistencies between the theory and astronomical observations, or by concepts that have been used to "fix" the theory so it agrees with those observations.

These fixes include theories which say the nascent universe expanded at speeds faster than the speed of light for an unknown period of time after the big bang; dark matter, which was used to explain how galaxies and clusters of galaxies keep from flying apart even though there seems to be too little matter to provide the gravity needed to hold them together; and dark energy, an unseen, unmeasured and unexplained force that is apparently causing the universe not only to expand, but to accelerate as it goes.

In research published April 10 in the "Astrophysical Journal, Letters," Lieu and Mittaz found that evidence provided by WMAP point to a slightly "super critical" universe, where there is more matter (and gravity) than what the standard interpretation of the WMAP data says. This posed serious problems to the inflationary paradigm.

Recent observations by NASA's new Spitzer space telescope found "old" stars and galaxies so far away that the light we are seeing now left those stars when (according to big bang theory) the universe was between 600 million and one billion years old - much too young to have galaxies with red giant stars that have burned off all of their hydrogen.

Other observations found clusters and super clusters of galaxies at those great distances, when the universe was supposed to have been so young that there had not been enough time for those monstrous intergalactic structures to form.

Copyright 2005 by Space Daily, Distributed United Press International

Explore further: Computer model shows moon's core surrounded by liquid and it's caused by Earth's gravity

add to favorites email to friend print save as pdf

Related Stories

European Central Bank hit by data theft

1 minute ago

(AP)—The European Central Bank said Thursday that email addresses and other contact information have been stolen from a database that serves its public website, though it stressed that no internal systems or market-sensitive ...

Nokia profits rise after sale of handset division

16 minutes ago

(AP)—Telecommunications and wireless equipment maker Nokia Corp. saw its shares surge on Thursday after it reported higher profits and an improved earnings outlook in the wake of its sale to Microsoft of its troubled handset ...

Twitter admits to diversity problem in workforce

2 hours ago

(AP)—Twitter acknowledged Wednesday that it has been hiring too many white and Asian men to fill high-paying technology jobs, just like several other major companies in Silicon Valley.

Recommended for you

Comet Jacques makes a 'questionable' appearance

14 hours ago

What an awesome photo! Italian amateur astronomer Rolando Ligustri nailed it earlier today using a remote telescope in New Mexico and wide-field 4-inch (106 mm) refractor. Currently the brightest comet in ...

Image: Our flocculent neighbour, the spiral galaxy M33

14 hours ago

The spiral galaxy M33, also known as the Triangulum Galaxy, is one of our closest cosmic neighbours, just three million light-years away. Home to some forty billion stars, it is the third largest in the ...

Titan offers clues to atmospheres of hazy planets

14 hours ago

When hazy planets pass across the face of their star, a curious thing happens. Astronomers are not able to see any changes in the range of light coming from the star and planet system.

Having fun with the equation of time

14 hours ago

If you're like us, you might've looked at a globe of the Earth in elementary school long before the days of Google Earth and wondered just what that strange looking figure eight thing on its side was.

User comments : 0