Scientists Explain Mysterious Plasma Jets On The Sun

Jul 29, 2004
Scientists Explain Mysterious Plasma Jets On The Sun

Scientists at the University of Sheffield and Lockheed Martin Solar and Astrophysics Lab have solved a 127-year-old problem about the origin of supersonic plasma jets (spicules) which continuously shoot up from the Sun. Their findings are published in today’s edition of Nature.

Spicules, are jets of gas or plasma that are propelled upwards from the surface of the Sun at speeds of about 90,000 kilometres per hour. They are fairly short lived, with each jet lasting only about 5 minutes, but reach heights of 5000 kilometres above the Sun’s surface. Their short life span and small size (less than 600 km) have meant that, although there are about 100,000 spicules at any one time in the Sun’s chromosphere, until now they have remained largely unexplained.

One of the reasons why these energetic jets are studied is because thay may contribute to solar wind. The solar wind is a stream of particles that sweeps past the Earth’s orbit and any disturbance to it can cause changes to the Earth’s upper atmosphere and space environment, damaging satellites in orbit.

The research team solved the problem of how spicules are formed by taking simultaneous images of both the surface of the Sun and the spicules using the Swedish Solar telescope and the TRACE satellite, which demonstrated that the jets often occur periodically (every five minutes or so) at the same location. The research team were able to use this data to develop a computer model of the Sun’s atmosphere, which showed that spicules are caused by sound waves on the surface of the Sun, that also occur periodically every five minutes or so.

Professor Erdélyi von Fáy-Siebenbürgen from the University of Sheffield and one of the leaders of the study explains, “The sound waves on the Sun’s surface are usually damped before they reach the atmosphere. However sometimes the sound waves pass through the damping zone and leak into the solar atmosphere. Our computer model shows that when this happens the sound waves develop into shock waves, which propel matter upwards, forming a supersonic jet of plasma, or spicule.

“We measured the waves at the surface of the Sun and applied our model to try to predict when spicules would shoot up and were pleased to find that the model predicts them well.

“Now we know how spicules are formed, scientists will be able to research them more thoroughly and start examining if, and how much, they contribute to the solar wind.”

Source: University of Sheffield

Explore further: NASA-NOAA Suomi NPP Satellite team ward off recent space debris threat

add to favorites email to friend print save as pdf

Related Stories

Heavy rains leave 22 dead in Nicaragua

2 hours ago

Days of torrential rains in Nicaragua left 22 people dead and left homeless more than 32,000 others, according to an official report Saturday.

New iPad cellular models have Apple SIM flexibility

2 hours ago

Cellular-enabled iPad models are under a new paradigm, said AppleInsider, regarding the Apple SIM. Apple's newest iPad models with cellular connectivity use a SIM card which tech sites said could eventually ...

Recommended for you

Beastly sunspot amazes, heightens eclipse excitement

3 hours ago

That's one big, black blemish on the Sun today! Rarely have we been witness to such an enormous sunspot. Lifting the #14 welder's glass to my eyes this morning I about jumped back and bumped into the garage.

The formation and development of desert dunes on Titan

5 hours ago

Combining climate models and observations of the surface of Titan from the Cassini probe, a team from the AIM Astrophysics Laboratory (CNRS / CEA / Paris Diderot University) , in collaboration with researchers ...

User comments : 0