Detecting the Traces of Mystery Matter

Jul 29, 2005
A splash of subatomic particle

Using high-speed collisions between gold atoms, scientists think they have re-created one of the most mysterious forms of matter in the universe -- quark-gluon plasma. This form of matter was present during the first microsecond of the Big Bang and may still exist at the cores of dense, distant stars.

Image: A splash of subatomic particles is created by the collision of gold atom nuclei traveling at nearly the speed of light in Brookhaven National Laboratory's Relativistic Heavy Ion Collider. (Brookhaven National Laboratory/STAR Collaboration/courtesy graph)

UC Davis physics professor Daniel Cebra is one of 543 collaborators on the research. His main role was building the electronic listening devices that collect information about the collisions, a job he compared to "troubleshooting 120,000 stereo systems."

Now, using those detectors, "we look for trends in what happened during the collision to learn what the quark-gluon plasma is like," he said.

"We have been trying to melt neutrons and protons, the building blocks of atomic nuclei, into their constituent quarks and gluons," Cebra said. "We needed a lot of heat, pressure and energy, all localized in a small space."

The scientists produced the right conditions with head-on collisions between the nuclei of gold atoms. The resulting quark-gluon plasma lasted an extremely short time -- less than 10-20 seconds, Cebra said. But the collision left tracings that the scientists could measure.

"Our work is like accident reconstruction," Cebra said. "We see fragments coming out of a collision, and we construct that information back to very small points."

Quark-gluon plasma was expected to behave like a gas, but the data shows a more liquid-like substance. The plasma is less compressible than expected, which means that it may be able to support the cores of very dense stars.

"If a neutron star gets large and dense enough, it may go through a quark phase, or it may just collapse into a black hole," Cebra said. "To support a quark star, the quark-gluon plasma would need rigidity. We now expect there to be quark stars, but they will be hard to study. If they exist, they're semi-infinitely far away."

The project is led by Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, with collaborators at 52 institutions worldwide. The work was done in Brookhaven's Relativistic Heavy Ion Collider (RHIC).

Source: UC Davis

Explore further: A 'quantum leap' in encryption technology

add to favorites email to friend print save as pdf

Related Stories

Strange Antihyperparticle Created

Mar 30, 2010

( -- Physicists, including nine from UC Davis, working at the U.S. Department of Energy's Brookhaven National Laboratory recently created some strange matter not seen since just after the Big Bang -- an "antihypertriton" ...

Recommended for you

A 'quantum leap' in encryption technology

11 hours ago

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Using antineutrinos to monitor nuclear reactors

12 hours ago

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...

Bake your own droplet lens

13 hours ago

A droplet of clear liquid can bend light, acting as a lens. Now, by exploiting this well-known phenomenon, researchers have developed a new process to create inexpensive high quality lenses that will cost ...

How do liquid foams block sound?

14 hours ago

Liquid foams have a remarkable property: they completely block the transmission of sound over a wide range of frequencies. CNRS physicists working in collaboration with teams from Paris Diderot and Rennes ...

Probing the sound of a quantum dot

14 hours ago

( —Physicists at the University of Sydney have discovered a method of using microwaves to probe the sounds of a quantum dot, a promising platform for building a quantum computer.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Apr 29, 2009
Recently, we have discovered a new process that can propose better outputs of Quark-Gluon Plasma than those of the RHIC. Mr.Tepparat Songkraw, a creator of this model, entitles his process as %u201CRelativistic Electron Repetition%u201D or %u201CRER%u201D. Its outputs are called Absolute Quark-Gluon Plasma model which is a part of Absolute Plasmon model.
Its images can be illustrated as follows:

More news stories

Phase transiting to a new quantum universe

( —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.