MoSys' 1T-SRAM-Q Memory Silicon-Verified on Chartered's 0.13-Micron Industry Standard Logic Process

Jul 27, 2004

MoSys, Inc. (Nasdaq:MOSY), the industry's leading provider of advanced high density embedded memory solutions, and Chartered Semiconductor Manufacturing ( Nasdaq:CHRT ) ( SGX:CHARTERED ), one of the world's top three dedicated semiconductor foundries, today announced the silicon validation of MoSys 1T-SRAM-Q(TM) (Quad density) embedded memory technology on Chartered's 0.13-micron industry-standard logic process. Their joint efforts have produced functional silicon devices and already resulted in new design engagements with mutual customers. The final phases of qualification are underway with full characterization data to be available by the end of the third quarter 2004.

With a complete macro density of approximately 1.2-square millimeters per megabit, 1T-SRAM-Q technology enables designers to embed even larger high-performance memories in their system-on-chip (SoC) designs. 1T-SRAM-Q technology incorporates MoSys' proprietary Transparent Error Correction(TM) (TEC(TM)) technology delivering the additional benefits of improved yield and reliability with elimination of laser repair and soft error concerns.

"Chartered's 0.13 silicon verification of 1T-SRAM-Q memory demonstrates MoSys' continued commitment to develop the best-in-class memory technology," commented Dr. Fu-Chieh Hsu, president and CEO of MoSys. "Now, SoC designers can integrate over 100 megabits of high-performance embedded memory in 0.13-micron designs."

1T-SRAM-Q memory is based on MoSys' patented Folded Area Capacitor(TM) (FAC (TM)) technology to reduce bit cell size by literally folding the bit cell gate oxide capacitor vertically down the STI sidewall, thus dramatically reducing the horizontal area. This results in typical bit cell sizes of 0.57 square microns at the 0.13-micron process node.

"The memory requirements of our customers are increasing over time and with each technology node. By coupling MoSys' high-density embedded memory technologies with our production-proven 0.13-micron process, we're giving designers more choices," said Kevin Meyer, vice president of worldwide marketing and services at Chartered. "With access to these world-class solutions, our customers can reduce the risks of implementing leading-edge, memory-intensive SoCs and still target the highest possible yields."

The 1T-SRAM-Q validation effort is an extension of the ongoing collaboration by the two companies to offer optimized high-density memory solutions on multiple technology generations and products. MoSys and Chartered have already successfully qualified MoSys' 1T-SRAM-R high-density memory solution on Chartered's 0.18-micron and 0.13-micron process technologies. The companies are in the process of qualifying the 1T-SRAM-R technology on the 90nm process platform jointly developed by Chartered and IBM.

Source: www.charteredsemi.com/

Explore further: Hackers force message on websites via US firm (Update)

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

A green data center with an autonomous power supply

1 hour ago

A new data center in the United States is generating electricity for its servers entirely from renewable sources, converting biogas from a sewage treatment plant into electricity and water. Siemens implemented ...

After a data breach, it's consumers left holding the bag

2 hours ago

Shoppers have launched into the holiday buying season and retailers are looking forward to year-end sales that make up almost 20% of their annual receipts. But as you check out at a store or click "purchase" on your online shopping cart ...

Can we create an energy efficient Internet?

2 hours ago

With the number of Internet connected devices rapidly increasing, researchers from Melbourne are starting a new research program to reduce energy consumption of such devices.

Brain inspired data engineering

3 hours ago

What if next-generation ICT systems could be based on the brain's structure and its cognitive and adaptive processes? A groundbreaking paradigm of brain-inspired intelligent ICT architectures is being born.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.