R&D 100 award for inexpensive gamma ray detector device

Jul 21, 2005

Douglas S. McGregor and Walter McNeil have a philosophy: use clever methods to keep things simple.
"You can always add more circuitry to make things complex, but that is just more to break down," McGregor said. "If we keep things very simple and use our knowledge of physics, it turns out that we can make something more reliable and less expensive."

That something is an inexpensive gamma ray detector that for years many scientists deemed too simple to work.

The invention, first introduced by McGregor, a Kansas State University associate professor of mechanical and nuclear engineering, and Ronald Rojeski, of Rojeski Research Engineering and Design, has already been awarded two U.S. patents. Using the patented design introduced by McGregor, McNeil, a K-State mechanical and nuclear engineering graduate student, simply wrapped Teflon and copper tape around a semiconductor block to improve the resolution of the gamma ray detector -- at a fraction of the cost of other techniques.

McNeil built a prototype of the compact, high-resolution device as an undergraduate student during a summer internship at the Brookhaven National Laboratory, in Upton, N.Y., on Long Island. McGregor has since received research funding to develop the detector from the Department of Energy Nuclear Engineering Education Research Program.

The invention received a 2005 R&D100 Award from R&D Magazine for being one of the top 100 most technologically significant products introduced into the marketplace over the past year. The award will be presented to the pair and their colleagues -- scientists from K-State, Brookhaven, Rojeski Research Engineering and Yinnel Tech, Inc. , at a black-tie ceremony in Chicago in October.

"It's quite an honor," McGregor said. " This is a chance to put our names out in front of the scientific community because a lot of people come to see these inventions."

The invention gives scientists an inexpensive way to reproduce the high-resolution detectors -- $150 instead of $5,000.

"It's a step forward in that respect," McNeil said. "More complicated devices like this have existed in technology; we're going further to identify high energy gamma radiation, which can penetrate deeper into material, with a far more simple and inexpensive device."

Perhaps the most practical application for the device is as a gamma ray spectrometer. According to McGregor, the energy resolution of a gamma ray detector is very important in detecting specific energies. The new detector is simpler to manufacture than previous designs and produces much better energy resolution.

"To date, for devices like this, it is the highest resolution that has ever been seen for an uncooled device without customized electronics" McGregor said. " There is no electronic correction, there are no fancy electronics, and it uses an ordinary pre-amplifier.

"With poor resolution, gamma rays cannot be accurately identified. That's why the energy resolution of these devices is so important. The better the energy resolution, the more important the device is as a spectrometer. Otherwise it's just another radiation counter."

McGregor said the device could serve homeland security purposes, as gamma ray lines are indicative of certain elements in weapons of mass destruction.

"Basically what this does is open up a whole new way of making a gamma ray imaging device," McGregor said. "It can be used for field surveys as a hand-held spectrometer, for medical imaging and for radiation monitoring at a remote location. It requires only a low amount of power."

McGregor and McNeil's design allows for an array of detectors to be stacked, making an imaging device that can detect high-energy gamma rays typically used in medical imaging systems such as PET scanners. These devices could be used in those machines to do a better job of producing medical images. The device, when formed into an array, can be used in medical research to image humans or small animals.

Source: Kansas State University

Explore further: Greenland darkening to continue, predicts CCNY expert Marco Tedesco

Related Stories

White dwarf may have shredded passing planet

27 minutes ago

The destruction of a planet may sound like the stuff of science fiction, but a team of astronomers has found evidence that this may have happened in an ancient cluster of stars at the edge of the Milky Way ...

Mexico boosts protection of near-extinct porpoise

5 hours ago

Mexico is greatly expanding a protected area of the Gulf of California and boosting navy patrols in an effort to save the vaquita marina, a small porpoise facing imminent extinction.

Court monitor: Apple antitrust cooperation has 'declined'

5 hours ago

Apple Inc.'s cooperation with efforts to improve its compliance with antitrust laws after a federal judge concluded it colluded with electronic book publishers to raise prices five years ago took on an "adversarial tone" ...

Recommended for you

European physicist discusses Higgs boson at Brown University

10 hours ago

The head of the European Organization for Nuclear Research says the historic 2012 discovery of the Higgs boson particle and the particle accelerator that detected it are getting scientists closer to understanding the creation ...

Quantum model helps solve mysteries of water

18 hours ago

Water is one of the most common and extensively studied substances on earth. It is vital for all known forms of life but its unique behaviour has yet to be explained in terms of the properties of individual ...

Boron-based atomic clusters mimic rare-earth metals

Apr 17, 2015

Rare Earth elements, found in the f-block of the periodic table, have particular magnetic and optical properties that make them valuable commodities. This has been particularly true over the last thirty years ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.