DNA-based molecular nano-wires

Jul 20, 2005

An international consortium of 7 universities and research centres are seeking an alternative to silicon-based microelectronics in using molecules of DNA, which could enable a reduction in size of the current systems by a thousand times. The University of the Basque Country (UPV/EHU) is participating in this project through the research group led by Professor Ángel Rubio Secades of the Department of Materials Physics.

The really innovative nature of this project lies, on the one hand, in the use of all the recognition and self-assembly potential of biological systems, more specifically, using derivatives of DNA such as G4-DNA, M-DNA and PC-DNA with a greater electronic potential than DNA itself (which is by itself an insulator). On the other, it lies in carrying out studies in surface chemistry combined with scanning probe microscopy (SPM) and spectroscopy, the measurement of electrical transport, sophisticated nano-manufacture and theoretical studies of the computational simulation of the stability and properties of synthesised devices and/or motivating new structures that might have a greater potential. In this way the manner of designing nano-wires using these molecular derivatives is being developed.

As is the way of controlling the interaction between the molecular electrode and the molecular substrate, seeking a deep understanding of the energy conduction mechanisms of these nano-wires and being able to produce models of nanomolecular devices based on these DNA derivatives.

Source: Elhuyar Fundazioa

Explore further: Nanoionics: A versatile system for constructing ion-conducting channels on monolayers

Related Stories

Decoding the cell's genetic filing system

Apr 22, 2015

A fully extended strand of human DNA measures about five feet in length. Yet it occupies a space just one-tenth of a cell by wrapping itself around histones—spool-like proteins—to form a dense hub of ...

Recommended for you

A new wrinkle for cell culture

Apr 23, 2015

Using a technique that introduces tiny wrinkles into sheets of graphene, researchers from Brown University have developed new textured surfaces for culturing cells in the lab that better mimic the complex ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.