DNA-based molecular nano-wires

Jul 20, 2005

An international consortium of 7 universities and research centres are seeking an alternative to silicon-based microelectronics in using molecules of DNA, which could enable a reduction in size of the current systems by a thousand times. The University of the Basque Country (UPV/EHU) is participating in this project through the research group led by Professor Ángel Rubio Secades of the Department of Materials Physics.

The really innovative nature of this project lies, on the one hand, in the use of all the recognition and self-assembly potential of biological systems, more specifically, using derivatives of DNA such as G4-DNA, M-DNA and PC-DNA with a greater electronic potential than DNA itself (which is by itself an insulator). On the other, it lies in carrying out studies in surface chemistry combined with scanning probe microscopy (SPM) and spectroscopy, the measurement of electrical transport, sophisticated nano-manufacture and theoretical studies of the computational simulation of the stability and properties of synthesised devices and/or motivating new structures that might have a greater potential. In this way the manner of designing nano-wires using these molecular derivatives is being developed.

As is the way of controlling the interaction between the molecular electrode and the molecular substrate, seeking a deep understanding of the energy conduction mechanisms of these nano-wires and being able to produce models of nanomolecular devices based on these DNA derivatives.

Source: Elhuyar Fundazioa

Explore further: Making graphene in your kitchen

add to favorites email to friend print save as pdf

Related Stories

Rapid and accurate mRNA detection in plant tissues

Apr 17, 2014

Gene expression is the process whereby the genetic information of DNA is used to manufacture functional products, such as proteins, which have numerous different functions in living organisms. Messenger RNA (mRNA) serves ...

Deadly human pathogen Cryptococcus fully sequenced

Apr 17, 2014

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Recommended for you

Making graphene in your kitchen

14 hours ago

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

'Exotic' material is like a switch when super thin

Apr 18, 2014

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Finnish inventor rethinks design of the axe

(Phys.org) —Finnish inventor Heikki Kärnä is the man behind the Vipukirves Leveraxe, which is a precision tool for splitting firewood. He designed the tool to make the job easier and more efficient, with ...