Temperature-sensitive Nanobrushes

Jul 13, 2005

Electrically conducting polymer with temperature-dependent optical properties and water solubility

The terms plastic and electrical current usually bring to mind such things as insulators or computer cases. It goes without saying that plastics are insulators, right? The discovery of conducting polymers actually resulted in a Nobel Prize in Chemistry for A.J. Heeger, A.G. MacDiarmid and H. Shirakawa in 2000—"plastic electronics" are on the move.

An American team has now developed a conducting polythiophene that demonstrates amazingly high water solubility and responds to the surrounding temperature as well.

Why the interest in electrically conducting polymers that are water-soluble? Water solubility allows for more environmentally friendly production processes. In addition, it is a requirement for many biological and diagnostic applications. Certain conducting polymers also respond to changes in their environment by a color change. This is just the thing for sensors that detect specific analyte molecules or indicate other parameters.

Polythiophenes, the most economically important class of conducting polymers, consist of long chains of five-membered rings containing four carbon atoms and one sulfur atom. Researchers led by Robin L. McCarley at Louisiana State University attached chains of a polyacrylamide derivative to a polythiophene backbone like bristles on the handle of a bottle brush. The "bristles" make the molecular "brushes" the most water-soluble neutral polythiophenes found to date.

But these bristles can do more: they respond sensitively to temperature changes. At temperatures under 30 °C, the brushes are in an irregular, stretched-out form and are loaded with water molecules. If the temperature is raised above 32 °C, these structures collapse into compact spheres, pushing the water molecules out. As a result, the entire brush responds to the conformational change of its bristles. From a stretched-out, only slightly balled-up form, it pulls itself into a compact spherical structure. This change decreases the water solubility of the brushes. More significantly, at the same time, the color changes; whereas a solution of the brushes at low temperature is orange-red in appearance, higher temperatures cause the color to change to yellow. This change in color indicates shifts in the electrical properties of the backbone.

Such water-soluble polymeric brushes, which react to external stimulation by changing their opto-electronic properties, could be used for biosensors in bioelectronics, as nanoswitches, light-emitting diodes, or fluorescence thermometers.

Source: Angewandte Chemie

Explore further: Researchers obtain first direct observation of facet formation in nanocubes

add to favorites email to friend print save as pdf

Related Stories

The promise and peril of nanotechnology

Mar 26, 2014

Scientists at Northwestern University have found a way to detect metastatic breast cancer by arranging strands of DNA into spherical shapes and using them to cover a tiny particle of gold, creating a "nano-flare" ...

Study shows size matters in prehistoric seas

Jan 23, 2014

Why did life forms first begin to get larger and what advantage did this increase in size provide? UCLA biologists working with an international team of scientists examined the earliest communities of large ...

Recommended for you

Cut flowers last longer with silver nanotechnology

13 hours ago

Once cut and dunked in a vase of water, flowers are susceptible to bacterial growth that shortens the length of time one has to enjoy the blooms. A few silver nanoparticles sprinkled into the water, might be the answer to ...

Relaxing DNA strands by using nano-channels

Aug 20, 2014

A simple and effective way of unravelling the often tangled mass of DNA is to 'thread' the strand into a nano-channel. A study carried out with the participation of the International School for Advanced Studies ...

User comments : 0