Integration of semiconductor and superconductor electronics on the nanoscale

Jul 08, 2005
Integration of semiconductor and superconductor electronics on the nanoscale

In the July 8 issue of Science, scientists from the Kavli Institute of Nanoscience Delft and Philips present the first superconducting transistors based on semiconductor nanowires. These nanoscale superconductor/semiconductor devices enable the fabrication of new nanoscale superconducting electronic circuits and at the same time they provide new opportunities for the study of fundamental quantum transport phenomena.

Image: Rendering of a semiconductor nanowire contacted by two superconducting metal electrodes. An opening in the side of the nanowire allows the viewer to look in the inside and see the conduction electrons. Close to the superconducting contacts the electrons are paired due to induced superconductivity, the main result of our work. The sky is formed by one of the measurements presented in the article. At the end of the nanowire the catalytic gold particle is located, a clear signature of the 'bottom-up' nature of the nanowires.

After the invention of the first solid-state transistor (Bardeen, Brattain and Shockley, 1947), semiconductors have become the reference material system for electronics. This success results from the possibility to control the resistance of a semiconductor with an electrical voltage applied to a nearby gate electrode. Despite the astonishing number of different types of semiconductor devices it has always been difficult to combine semiconductors with superconducting materials, i.e. materials with vanishing resistance at low temperatures. This exotic combination has captured the attention of both experimental and theoretical physicists already since the 80s. It enables new technology for electronic circuits based on dissipation-less superconducting elements which could be exploited for advanced applications where the requirement of low-temperature operation is not a limiting factor.

Scanning electron micrograph of one of the semiconductor nanowire devices


Image above: Scanning electron micrograph of one of the semiconductor nanowire devices. The nanowire is contacted by three superconducting aluminum contacts that induce the superconductivity in the nanowire. The device is fabricated on an oxidized doped silicon wafer that is used as a gate electrode in order to control the supercurrent. At the end of the wire the gold nanoparticle is clearly visible.

The results presented in the Science article show that the combination of indium arsenide semiconductor nanowires with aluminum-based superconducting contacts results in very reproducible superconducting transistors. In these devices a supercurrent (i.e. a current without resistance) can flow through the nanowire from one superconducting contact to the other. This quantum effect can be described as the “leakage” of Cooper pairs (i.e. paired electrons responsible for superconductivity) from the superconducting contacts into the semiconductor nanowire. Moreover, this supercurrent can be controlled by a gate voltage making it a supercurrent transistor.

The use of a recently developed method to grow semiconductor nanowires plays a central role in this achievement. The nanowires are made in a “bottom up” technology, i.e. instead of growing layers of material and removing the regions that are not needed, a device is constructed from small building blocks. In this case the nanowires grow from small gold particles by a vapor-liquid-solid (VLS) process. The size of these nanoparticles is in the range between 10 and 100 nm and this sets the diameter of the nanowires. The length of the nanowires is proportional to the growth time and can easily reach tens of microns providing a convenient aspect ratio for post-growth device fabrication.

The demonstrated high yield of the superconducting devices is an important requirement for the successful up scaling to small superconducting circuits incorporating multiple nanowire devices. For instance, two nanowire devices could be used to build an electrically tunable superconducting quantum interference device (SQUID). Such a device could be useful in solid-state quantum computer architectures as a switchable coupling element between superconducting quantum bits. Another possibility could be the combination of a nanowire light-emitting diode (LED; this can be made by alternating the semiconductor vapor between n- and p-doped during growth) with superconductivity in order to transfer quantum information from electrons to photons.

Explore further: Innovative strategy to facilitate organ repair

add to favorites email to friend print save as pdf

Related Stories

Semiconductors with electric and magnetic properties

Oct 17, 2012

European scientists developed solid-state semiconductor components with magnetic properties, a prerequisite for a new generation of electronic devices exploiting both the charge and the spin of electrons.

Theoretical physicists probe the Majorana mystery

Aug 01, 2012

(Phys.org) -- With headlines proclaiming the discovery of the Higgs boson particle physics has captured the imagination of the world, particularly among those who dwell on the nature of the cosmos. But this ...

One step closer to quantum computers

Jul 06, 2012

EU researchers have developed novel ways of producing qubits that enhance their efficiency, potentially bringing the world one step closer to the ‘Holy Grail’ of supercomputing.

How graphene's electrical properties can be tuned

Sep 26, 2011

An accidental discovery in a physicist's laboratory at the University of California, Riverside provides a unique route for tuning the electrical properties of graphene, nature's thinnest elastic material. ...

Recommended for you

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

'Exotic' material is like a switch when super thin

Apr 18, 2014

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

User comments : 0

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.