Plasma experiment shows how astrophysical jets are formed

Jun 29, 2005

Applied physicists at the California Institute of Technology have devised a plasma experiment that shows how huge long, thin jets of material shoot out from exotic astrophysical objects such as young stars, black holes, and galactic nuclei.

Reporting in an upcoming issue of the journal Physical Review Letters, applied physics professor Paul Bellan, his graduate student Gunsu Yun, and postdoctoral scholar Setthivoine You describe how they create jets of plasma at will in an experimental device known as a "planar spheromak gun." The researchers form the jets by sending an intense electric current through a gas to form a plasma, after applying a background magnetic field to the whole system. The magnetized plasma then naturally tends to shoot out of the gun in the form of a long collimated filament.

According to Bellan, his research group is the first to achieve an experimental result showing how astrophysical jets are formed. Theorists have done mathematical modeling and computer simulations to show how known magnetohydrodynamic effects could explain the jet phenomenon, but the Bellan experiment actually creates similar jets in a lab device.

"We're not claiming to make scale models, but I think we've captured the essence of astrophysical jets," says Bellan, who has been working on this and related projects at Caltech since the late 1990s.

Although there are differences between astrophysical jets and the ones created in the spheromak gun, Bellan says there are also important similarities that link the 13-inch-long plasma jets created in the lab to the enormous jets in outer space. The similarity is primarily in the way that the magnetic flux tubes are straightened through a sort of squeezing effect that points to a common collimation process.

Astrophysical jets are accelerated by magnetic forces, but also carry along magnetic fields, the researchers explain. These magnetic fields are frozen into the plasma that makes up the jet and wrapped around the jet like rubber bands around a paper tube. The flowing plasma piles up, much like fast traffic coming up on slower traffic on a freeway, and this pile-up increases the plasma density just like the density of cars increases in a traffic jam.

The frozen-in bandlike magnetic field lines also become squeezed together in this "traffic jam," and so, just like rubber bands piling up on a paper tube, pinch down the diameter of the plasma jet, making it thin and even more dense.

Why do the researchers think this is an accurate portrayal of astrophysical jets? Because this is precisely how they make similar but smaller jets in their experiment.

"Very dense, fast, thin plasma jets observed in our laboratory experiments have been shown to be in good agreement with this picture," explains You.

Bellan says that the research stems from work he and his group have done for years in the formidable and longstanding effort to make fusion power an eventual reality. The current results have implications for the goal of containing the extremely hot plasma required for fusion, as well as for explaining certain exotic events in the cosmos.

Source: California Institute of Technology

Explore further: Exploring X-ray phase tomography with synchrotron radiation

add to favorites email to friend print save as pdf

Related Stories

Cosmic jets of young stars formed by magnetic fields

Oct 16, 2014

Astrophysical jets are counted among our Universe's most spectacular phenomena: From the centers of black holes, quasars, or protostars, these rays of matter sometimes protrude several light years into space. ...

Two dynamos drive Jupiter's magnetic field

Aug 21, 2014

(Phys.org) —Superlatives are the trademark of the planet Jupiter. The magnetic field at the top edge of the cloud surrounding the largest member of the solar system is around ten times stronger than Earth's, ...

Spacequakes Rumble Near Earth (w/ Video)

Jul 28, 2010

Researchers using NASA's fleet of five THEMIS spacecraft have discovered a form of space weather that packs the punch of an earthquake and plays a key role in sparking bright Northern Lights. They call it ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

5 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

5 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

6 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

Quantum holograms as atomic scale memory keepsake

6 hours ago

Russian scientists have developed a theoretical model of quantum memory for light, adapting the concept of a hologram to a quantum system. These findings from Anton Vetlugin and Ivan Sokolov from St. Petersburg ...

User comments : 0