Preparing for the Impact

May 30, 2005
Preparing for the Impact

On July 4, 2005, the NASA Deep Impact spacecraft will visit Comet 9P/Tempel 1. It will launch a 360 kg impactor that should produce a crater on the surface of the comet and a plume of gas and dust.
This experiment will be the first opportunity to study the crust and the interior of a comet. As the material inside the comet's nucleus is pristine, it will reveal new information on the early phases of the Solar System. It will also provide scientists with new insight on crater physics, and thereby give a better understanding on the crater record on comets and other bodies in the Solar System.

Image: A false-colour composite image of Comet 9P/Tempel 1 taken with EMMI on the ESO 3.5m New Technology Telescope, during the night from 2005 May 4 to 5. North is up, East is left; the field of view is 2.5 arcmin.

The scientific outcome of the experiment depends crucially on pre-impact and follow-up observations. Before the impact, it is indeed necessary to accumulate a significant amount of data so as to fully characterise the comet, in terms of size, albedo (reflectivity), rotation period, etc. It is also essential to have a good baseline of observations before the impact to unambiguously discriminate the effects of the impact from the natural activity of the comet. Due to the currently limited understanding of the structure of these dirty snowballs - which is a rather precise definition of a comet - it is indeed far from clear what the effect of the impact will be. Although the most likely model predicts the ejection of a plume and a football stadium sized crater, other model predictions vary between the comet simply swallowing the impactor (with barely any visible effect) to the eventual break-up of the nucleus.

As part of a very large international collaboration, two teams of astronomers have used ESO's telescopes over several months to do pre-impact monitoring, taking images and spectra of the comet both in the visible and mid-infrared wavebands. These teams make observations typically once per month, using either the 3.6m or the 3.5m NTT telescopes at La Silla.

ESO PR Photo 17/05 shows the latest of these monitoring images. Obtained during the night of May 4 to 5 with the EMMI instrument on the New Technology Telescope (NTT), it shows the comet, 100 million kilometres away from Earth. The coma extends more than 30 thousand kilometres from the comet nucleus, which is a 5 km diameter snowball hidden in the central bright core of the coma.

Getting Ready

ESO will also actively participate in the post-impact observations. As soon as Comet 9P/Tempel 1 is visible after the impact from Chile, and for a whole week thereafter, all major ESO telescopes - i.e. the four Unit Telescopes of the Very Large Telescope Array at Paranal, as well as the 3.6m, 3.5m NTT and the 2.2m ESO/MPG telescopes at La Silla - will be observing Comet 9P/Tempel 1, in a coordinated fashion and in very close collaboration with the space mission' scientific team. Among all observatories, the ESO La Silla Paranal Observatory will thus provide the best coverage of this one of its kind event.

The series of observations will provide unique clues to several questions related to comets. One will study in detail the chemical composition of the gas in the comet's coma, looking for fresh material from the nucleus' interior ejected during the impact. The careful study of this pristine material will provide important clues to trace the origins of comets, and so, on the formation of the solar system. The other series of observations will focus on the dust and boulders that should be released during the impact, thereby characterising the structure and composition of the nucleus. Astronomers should then finally know what these "dirty snowballs" are really made of.

A dedicated web site, deepimpact.eso.org , will provide up-to-date information on the observing programmes, on the impact and on the live coverage of the observations on July 4 and 5. Until this web site is up and running, the site can be accessed through www.eso.org/outreach/DeepImpact

Source: European Southern Observatory (ESO)

Explore further: Space: The final frontier... open to the public

add to favorites email to friend print save as pdf

Related Stories

Caterpillar comet poses for pictures en route to Mars

Sep 01, 2014

Now that's pure gorgeous. As Comet C/2013 A1 Siding Spring sidles towards its October 19th encounter with Mars, it's passing a trio of sumptuous deep sky objects near the south celestial pole this week. ...

NASA Mars spacecraft prepare for close comet flyby

Jul 26, 2014

NASA is taking steps to protect its Mars orbiters, while preserving opportunities to gather valuable scientific data, as Comet C/2013 A1 Siding Spring heads toward a close flyby of Mars on Oct. 19.

The dual personality of comet 67P/C-G

Jul 18, 2014

(Phys.org) —This week's images of comet 67P/Churyumov-Gerasimenko reveal an extraordinarily irregular shape. We had hints of that in last week's images and in the unscheduled previews that were seen a few ...

Recommended for you

Space: The final frontier... open to the public

25 minutes ago

Historically, spaceflight has been reserved for the very healthy. Astronauts are selected for their ability to meet the highest physical and psychological standards to prepare them for any unknown challenges. However, with ...

NASA releases IRIS footage of X-class flare (w/ Video)

26 minutes ago

On Sept. 10, 2014, NASA's newest solar observatory, the Interface Region Imaging Spectrograph, or IRIS, mission joined other telescopes to witness an X-class flare – an example of one of the strongest solar flares—on ...

NASA's Maven spacecraft reaches Mars this weekend

1 hour ago

Mars, get ready for another visitor or two. This weekend, NASA's Maven spacecraft will reach the red planet following a 10-month journey spanning 442 million miles (711 million kilometers).

Video: MAVEN set to slide into orbit around Mars

8 hours ago

A NASA mission to Mars led by the University of Colorado Boulder is set to slide into orbit around the red planet this week after a 10-month, 442-million mile chase through the inner solar system. 

User comments : 0