Physicists control the flip of electron spin

May 27, 2005

Today's computers and other technological gizmos operate on electronic charges, but researchers predict that a new generation of smaller, faster, more efficient devices could be developed based on another scientific concept – electronic "spin." The problem, however, is that researchers have found it challenging to control or predict spin – which keeps practical applications out of reach.
But physicists in Europe, California and at Ohio University now have found a way to manipulate the spin of an electron with a jolt of voltage from a battery, according to research findings published in the recent issue of the journal Physical Review Letters.

In the new study, scientists applied voltage to the electron in a quantum dot, which is a tiny, nanometer-sized semiconductor. The burst of power changed the direction of the electron's spin -- which can move either up or down. This also caused it to emit a small particle of light called a photon, explained Richard Warburton, a physicist with Heriot-Watt University in Edinburgh, Scotland, and lead author on the new paper.

"Usually you have no control over this at all – an electron flips its spin at some point, and you scratch your head and wonder why it happened. But in our experiment, we can choose how long this process takes," he said.

The experiment was based on a theory by Sasha Govorov, an Ohio University associate professor of physics and astronomy who is co-author on the current paper. Pierre Petroff, a scientist with the University of California at Santa Barbara, contributed the semiconductor used in the experiment, Indium Arsenide, which commonly is used in electronics. "It's one of those happy collaborations -- Pierre has given us some fantastic material and Sasha has come up with some really smart ideas," Warburton said.

The scientists were able to manipulate how long it would take for the electron to flip its spin and emit a photon – from one to 20 nanoseconds. But Govorov's theory suggests that 20 nanoseconds isn't the upper limit, which will lead the physicists to try out longer time periods.

Scientists' abilities to control the spin of the electron help determine the properties of the photon, which in turn could have implications for the development of optoelectronics and quantum cryptography. Photons could be encoded with secure information, which could serve as the basis for anti-eavesdropping technology, Warburton said.

The current study is one of many in the growing field of nanoscience that aims to find, understand and control physical effects at the nanoscale that could serve as the basis of a new generation of technology that is smaller and more powerful than today's electronic devices, Govorov said.

"The principles, knowledge and experience will be used for practical, real devices, we hope," he said.

The study was funded by EPSRC in the United Kingdom, Ohio University, Volkswagen, and the Alexander von Humboldt Foundations, with additional support by the Scottish Executive and the Royal Society of Edinburgh. Collaborators on the paper are Jason Smith and Paul Dalgarno of Heriot-Watt University, Khaled Karrai of the Ludwig-Maximilians-Universitat in Germany, and Brian Gerardot and Pierre Petroff with the University of California Santa Barbara.

Source: Ohio University

Explore further: X-rays probe LHC for cause of short circuit

add to favorites email to friend print save as pdf

Related Stories

Humble neutron is valuable tool in geology

Mar 16, 2015

With the ability to analyse the properties of the Earth's internal components to the atomic scale in conditions only found kilometres below our feet, recent studies have allowed geoscientists to study our ...

Uncovering the secrets of super solar power perovskites

Mar 16, 2015

The best hope for cheap, super-efficient solar power is a remarkable family of crystalline materials called hybrid perovskites. In just five years of development, hybrid perovskite solar cells have attained ...

Recommended for you

New insights found in black hole collisions

9 hours ago

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

9 hours ago

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

13 hours ago

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

First glimpse inside a macroscopic quantum state

16 hours ago

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.