Chip-scale refrigerators cool bulk objects

Apr 21, 2005
Chip-scale refrigerators cool bulk objects

Chip-scale refrigerators capable of reaching temperatures as low as 100 milliKelvin have been used to cool bulk objects for the first time, researchers at the National Institute of Standards and Technology (NIST) report. The solid-state refrigerators have applications such as cooling cryogenic sensors in highly sensitive instruments for semiconductor defect analysis and astronomical research.

Image: This colorized scanning electron micrograph shows a cube of germanium attached to a membrane. The four small light blue rectangles at the midpoints of the membrane perimeter are chip-scale refrigerators that cooled the cube and membrane to only a few hundred thousandths of a degree above absolute zero.
Image credit: N. Miller, A. Clark/NIST

The work is featured in the April 25, 2005, issue of Applied Physics Letters.* The NIST-designed refrigerators, each 25 by 15 micrometers, are sandwiches of a normal metal, an insulator and a superconducting metal. When a voltage is applied across the sandwich, the hottest electrons "tunnel" from the normal metal through the insulator to the superconductor. The temperature in the normal metal drops dramatically and drains electronic and vibrational energy from the objects being cooled.

The researchers used four pairs of these sandwiches to cool the contents of a silicon nitrate membrane that was 450 micrometers on a side and 0.4 micrometers thick. A cube of germanium 250 micrometers on a side was glued on top of the membrane. The cube is about 11,000 times larger than the combined volume of the refrigerators. This is roughly equivalent to having a refrigerator the size of a person cool an object the size of the Statue of Liberty. Both objects were cooled down to about 200 mK, and further improvements in refrigerator performance are possible, according to the paper.

The refrigerators are fabricated using common chip-making lithography methods, making production and integration with other microscale devices straightforward. The devices are much smaller and less expensive than conventional equipment used for cooling down to 100 mK, a target temperature for optimizing the performance of cryogenic sensors. These sensors take advantage of unusual phenomena that occur at very low temperatures to detect very small differences in X-rays given off by nanometer-scale particles, enabling users such as the semiconductor industry to identify the particles. The work was supported in part by the National Aeronautics and Space Administration and NIST's Office of Microelectronics Programs.

*A.M. Clark, N.A. Miller, A. Williams, S.T. Ruggiero, G.C. Hilton, L.R. Vale, J.A. Beall, K.D. Irwin, J.N. Ullom. Cooling of Bulk Material by Electron-Tunneling Refrigerators. Applied Physics Letters. April 25, 2005.

Source: National Institute of Standards and Technology (NIST)

Explore further: A 'quantum leap' in encryption technology

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

A 'quantum leap' in encryption technology

13 hours ago

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Using antineutrinos to monitor nuclear reactors

14 hours ago

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...

Bake your own droplet lens

15 hours ago

A droplet of clear liquid can bend light, acting as a lens. Now, by exploiting this well-known phenomenon, researchers have developed a new process to create inexpensive high quality lenses that will cost ...

How do liquid foams block sound?

16 hours ago

Liquid foams have a remarkable property: they completely block the transmission of sound over a wide range of frequencies. CNRS physicists working in collaboration with teams from Paris Diderot and Rennes ...

Probing the sound of a quantum dot

16 hours ago

( —Physicists at the University of Sydney have discovered a method of using microwaves to probe the sounds of a quantum dot, a promising platform for building a quantum computer.

User comments : 0

More news stories

Phase transiting to a new quantum universe

( —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...